
Quality of life in a dynamic spatial model∗

Gabriel M. Ahlfeldt † Fabian Bald ‡ Duncan H.W. Roth § Tobias Seidel ¶

April 29, 2021

Abstract

We develop a dynamic spatial model in which heterogeneous workers are imperfectly mobile and
forward-looking and yet all structural fundamentals can be inverted without assuming that the
economy is in a stationary spatial equilibrium. Exploiting this novel feature of the model, we show
that the canonical spatial equilibrium framework understates spatial quality-of-life differentials,
the urban quality-of-life premium and the value of local non-marketed goods. Unlike the canonical
spatial equilibrium framework, the model quantitatively accounts for local welfare effects that
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A Introduction

In economics, quality of life (QoL) is a location-specific utility shifter that can be used to

value local public goods or bads such as clean or dirty air. From Ricardo (1817) via the

neoclassical Rosen (1979)-Roback (1982) framework to quantitative spatial models (QSMs)

summarised by Redding and Rossi-Hansberg (2017), economists have inferred QoL assuming

a competitive spatial equilibrium (CSE) in which free mobility of homogeneous workers leads

to perfect spatial arbitrage. Spatially invariant utility then ensures that spatial differences in

amenity values are offset by differences in real wages, the so-called compensating differential.

In reality, workers rarely move between local labour markets more than once or twice over

their employment biography, owing to idiosyncratic tastes for locations and non-pecuniary

migration costs that typically exceed the equivalent of an annual income (Koşar et al., 2021).

Hence, spatial arbitrage is likely imperfect, raising a range of important questions. How should

we measure QoL without imposing an exogenous reservation utility level? How should we

value local non-marketed goods if real wage differences do not map directly to compensating

differentials? How should we evaluate the aggregate and distributional consequences of QoL

policies in a frictional world with spatial incidence, i.e. persistent localised utility effects?

To answer these questions, we develop a quantitative general equilibrium model that com-

bines the strengths of two recent classes of spatial models. It inherits the complete invertibility

from QSMs (Allen and Arkolakis, 2014; Ahlfeldt et al., 2015; Monte et al., 2018) and the abil-

ity to account for frictional adjustments in the spatial economy from dynamic spatial models

(DSMs) (Desmet et al., 2018; Caliendo et al., 2019a; Monras, 2020). Specifically, we propose

the first DSM with heterogeneous, imperfectly mobile and forward-looking agents that can

be fully quantified without assuming that the economy is observed in stationary spatial equi-

librium. We exploit this novel feature for a threefold contribution. First, we propose a new

approach to measuring QoL that allows for worker heterogeneity and costly migration and

does not impose any restriction on the spatial distribution of worker utility. Second, we show

theoretically and empirically that the canonical CSE framework severely understates spatial

differentials in QoL, the urban QoL premium, and the value of local public goods. Third,

we illustrate how the welfare effect of spatially targeted QoL policies critically depends on

the social welfare function, owing to imperfect spatial arbitrage, relocation effects, and spatial

incidence.

Our quantitative model incorporates an arbitrary number of worker groups and an arbitrary

number of local labour markets that are interconnected through costly migration. Following the

conventions in the literature, we treat QoL as a group-region-specific structural fundamental

that shifts utility. Locations further differ in terms of exogenous housing productivity and land

supply. Labour productivity is group-region-specific and consists of an exogenous component

and an endogenous component that positively depends on density (Combes and Gobillon,

2015). Labour is the only factor of production used to produce one final good which is freely

traded and consumed at a spatially invariant price. Housing is produced by developers who

use capital and land from absentee owners as inputs. Workers spend their labour income on
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the tradable good and housing. All markets are competitive. Inelastic supply of land generates

a dispersion force in the form of high rents in places in high demand (Combes et al., 2019).

Unlike in CSE models that assume perfect spatial arbitrage, spatial arbitrage is an endoge-

nous mechanism in our model that operates through migration. Intuitively, migration into an

attractive region congests the housing market, leading to subsequently reduced in-migration

as long as the housing-market-related congestion force exceeds the labour-market-related ag-

glomeration force. Concretely, we model migration as an investment decision in which workers

choose destinations facing a trade-off between the present value of expected utility flows and

a one-off relocation cost. Following the discrete choice literature in the tradition of McFadden

(1974), workers receive bilateral amenity shocks with an idiosyncratic and a group-year-specific

component. This stochastic formulation provides the microeconomic foundation for a migra-

tion gravity equation that has been found to be empirically successful (Kennan and Walker,

2011; Bryan and Morten, 2019; Tombe and Zhu, 2019). The dispersion of the idiosyncratic

component is inversely related to the migration elasticity, which monitors how strongly bilateral

migration probabilities respond to differences in expected indirect utility at migration destina-

tions. If the migration elasticity approaches zero, shocks to labour and housing productivity

or QoL will not trigger migration so that any localised utility effect remains persistent. If the

migration elasticity approaches infinity, there is no taste heterogeneity so that migration will

go on until a shock that has caused migration is fully offset by adjustments in wages and rents.

Spatial arbitrage is then perfect. We show that for values of the migration elasticity found in

our data and in previous research (Caliendo et al., 2019b), the marginal worker’s willingness

to accept high real living cost steeply decreases in the size of a local labour market. Therefore,

our model rationalises real living cost differentials by much larger differences in group-specific

average QoL than the canonical CSE framework, leading to a higher urban QoL premium and

larger valuations of local public goods.

When switching between labour markets workers pay an origin-destination-group-specific

migration cost in the form of foregone utility in the relocation period. Workers remaining at

their origin incur no migration cost. Larger bilateral migration costs map to smaller migration

flows between local labour markets, leading to a lower speed of spatial arbitrage. More gen-

erally, positive migration costs imply that spatial adjustments are non-instantaneous, giving

rise to the dynamic structure of the model and distinct notions of spatial equilibria. In the

absence of a consensus, we take the liberty of naming a transitory spatial equilibrium (TSE)

and a stationary spatial equilibrium (SSE) that prevail in the nascent DSM literature. The

role of the TSE is to rationalise observed data assuming that goods and factor markets clear

without imposing any restriction on trends in prices and quantities on labour and housing

markets. In the SSE, goods and factor markets clear and all prices and quantities are sta-

tionary. Intuitively, the SSE is a counterfactual situation to which a spatial economy would

mean-revert in the absence of further shocks to labour productivity, housing productivity and

QoL (the structural fundamentals). Since imperfectly mobile workers likely form sophisticated

expectations about the economic prospects at destinations, we assume that workers anticipate

all model-endogenous adjustments in wages and prices that occur over the transition from the
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TSE into the SSE.

Our main methodological contribution is to develop a DSM with forward-looking agents

that can be fully quantified from the TSE. The quantification follows the basic steps known from

the QSM literature (Redding and Rossi-Hansberg, 2017). First, we use observed data and the

structure of the model to estimate the key structural parameters. Second, we use observed data,

the structure of the model, and the structural parameters to invert the structural fundamentals.

For the quantification, we leverage on a matched employer-employee data set covering about

30M German workers contributing to social insurances, who we track over space and time.

In particular, we observe the local labour market in which they work (Kosfeld and Werner,

2012), the nominal wage, and a range of characteristics including age, gender, and education

for all years from 1993 to 2017. Aggregation of these micro data yields total employment and

bilateral migration by region, year and 18 worker groups based on age, gender, and skills. To

these data, we merge a regional mix-adjusted property price index starting in 2007, which we

generate from property micro data containing about 17M observations.

We derive all empirical specifications used in the estimation of the structural parameters

directly from the structure of the model. The identification strategies we use are close to what

we consider the current best-practice examples in the respective literature. Our contribution

is to exploit the richness of our data to provide parameter estimates for 18 gender-skill-age

groups. We estimate the density elasticity of productivity from between-labour market movers

controlling for individual fixed effects (Combes et al., 2008) using a 100-year lag of population

density as an instrument (Ciccone and Hall, 1996). Depending on the group, our elasticity

estimates range from near zero to 0.042, with relatively large estimates for female, skilled, and

middle-aged workers. The weighted average of 0.024 is close to the consensus in the literature

(Combes and Gobillon, 2015). Our strategy to estimating the share of land in housing is closest

to Combes et al. (2019). We estimate a value of 0.19 which is within the typical range in the

literature (Ahlfeldt and Pietrostefani, 2019). For the migration elasticity, we use a log-linearised

and spatially differenced version of a migration gravity equation in which leading migration

probabilities control for future utility flows following Artuç et al. (2010). Our group-specific

estimates range from 0.12 to 0.58 which compares to an estimate of 0.5 for the average worker

in the US (Caliendo et al., 2019b). To obtain group-origin-destination-specific estimates of

bilateral migration costs, we use our estimates of the migration elasticity, the restriction that

internal migration is costless, and a non-parametric version of a conventional migration gravity

equation (Head and Mayer, 2014). Based on our estimates, we monetise the average moving

cost at e170K which is towards the higher end of the survey-based estimates provided by

Koşar et al. (2021). Controlling for distance and instrumenting with historic dialect similarity

(Falck et al., 2012), social connectedness as measured by Bailey et al. (2018) has a large and

positive effect on our estimated migration costs, suggesting a role for social capital (Glaeser et

al., 2002).

Conditional on these estimates, the inversion of fundamental housing and labour productiv-

ity is straightforward as there is a one-to-one mapping from wages and rents for given structural

parameters and observed density. In contrast, the inversion of QoL from the TSE in a DSM

3



with forward-looking agents is challenging. While QoL is straightforward to invert for given

expected wages and rents, the model requires QoL as an input to forecast the transition paths

of wages and rents to the SSE. The DSM literature has not yet found an elegant solution to

this circularity problem. Desmet et al. (2018) and Conte et al. (2020) avoid the problem by as-

suming that workers have static expectations.1 Monras (2020) avoids the problem by assuming

that the economy is observed in a long-run equilibrium. Caliendo et al. (2019b), Caliendo et al.

(2019a) and Balboni (2019) use ”dynamic hat algebra” to quantify the model in differences and

do not invert QoL.2 Our contribution is to develop a new procedure that inverts QoL and solves

for the SSE simultaneously. To this end, we exploit that there is a one-to-one mapping from

employment to wages and rents for given structural fundamentals and parameters. Therefore,

we can conclude the quantification of the model by treating the identification of the unknown

group-region-specific QoL and the unknown vector of group-region-specific employment for all

future periods as a fixed point problem that is solved numerically. With this approach, we find

that about 65% of the spatial convergence from the TSE to the SSE are completed within 30

years.

In the first application of our quantified model, we establish that our novel QoL index

(DSM-QoL) is much more dispersed than the canonical Rosen-Roback measure (RR-QoL). In

log terms, the within-group standard deviation of the DSM-QoL exceeds that of the RR-QoL

by a factor of three. This is a striking result that has major implications for the literatures on

the origins of QoL (e.g. Roback, 1982; Blomquist et al., 1988; Albouy, 2011) and the value of

local public goods (e.g. Chay and Greenstone, 2005; Linden and Rockoff, 2008; Cellini et al.,

2010). We estimate that the city size elasticity of the DSM-QoL, at about 0.45, is about four

times as large as for the RR-QoL. Hence, the extant literature may have dismissed an urban

QoL premium too soon (see Albouy, 2011, for a summary). We find that consumption benefits

contribute more to the spatial concentration of workers in cities than productivity advantages,

which helps rationalizing why high-skilled workers tend to live in cities although many of their

jobs could be done remotely (Althoff et al., 2020). The relatively low dispersion of the RR-QoL

is also consequential for the valuation of local public goods. As an example, a decrease in air

pollution is associated with a more than twice as large increase in DSM-QoL than in RR-QoL.3

This result helps reconciling the puzzling finding that the monetised effect of dirty air on self-

reported well-being is larger than the willingness to pay for clean air inferred from property

prices under the CSE assumption (Luechinger, 2009). Quantifying the model under alternative

values of the migration elasticity, we find that the elasticity of the RR-QoL with respect to

the DSM-QoL increases from less than 0.3 to 0.8 if we increase the migration elasticity from

0.3 to 3.0. Hence, the CSE remains a useful and convenient framework for settings where the

idiosyncrasy of tastes plays a subordinate role. Since a simple count measure of geo-tagged

photos shared online (Ahlfeldt, 2013) explains almost 60% of the variation in DSM-QoL, social

1In a static model, quality of life can be interpreted as a component of the destination fixed effect in a
gravity regression (Lin et al., 2019).

2See Table A1 for a summary classification of the related literature.
3This finding echos Bayer et al. (2009) who extend a hedonic model to account for moving cost when

estimating the marginal willingness to pay for clean air.
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media represents an alternative avenue to proxy for QoL differentials, similar to use of lights

at night as a proxy for GDP (Henderson et al., 2012).

In the second application of our quantified model, we illustrate how the tractability of our

DSM makes it a powerful tool for spatial policy analysis. We introduce a procedure suitable

for the evaluation of any spatial policy that has an effect on any of the structural fundamentals

in general equilibrium. Since returns to agglomeration and amenity preferences are group-

specific, the model delivers rich sorting effects and group-specific welfare effects (Diamond,

2016; Almagro and Domı́nguez-Iino, 2020). Because the model accounts for imperfect spatial

arbitrage and does not impose any restriction on the spatial distribution of expected worker

utility, spatial policies have spatial welfare effects. This is an important contribution to a

literature on place-based policy evaluation in which the incidence on non-marginal workers

is well understood theoretically (Moretti, 2011; Kline and Moretti, 2014), but ruled out in

the extant quantitative frameworks based on the CSE (Blouri and Ehrlich, 2020; Fajgelbaum

and Gaubert, 2020).4 We illustrate our procedure for a hypothetical policy that reduces air

pollution in the most polluted areas, similar to the US Clean Air Act (Chay and Greenstone,

2005). To this end, we establish the group-specific causal link between the inverted DSM-QoL

and observed air pollution (PM10) exploiting wind-induced exogenous variation (Deryugina et

al., 2019; Heblich et al., 2020a). Starting from the SSE, we use these estimates to update QoL

to reflect the policy change and let the model converge to a counterfactual SSE. Comparing the

initial to the counterfactual SSE, we obtain group-region-specific changes in expected utility

alongside group-region-specific wage, region-specific rent and rich sorting effects. This SSE-

to-SSE comparison provides causal estimates of the place-based policy that are unconfounded

by the mean-reversion tendency of the economy and account for displacement effects that are

a challenge in the reduced-form estimation of spatial policy effects. In a nutshell, we find

that workers move from the untreated to the (positively) treated regions. Due to sorting and

agglomeration effects, the policy effect on GDP is somewhat larger than on population. Since

only about one fourth of the QoL increase capitalises into rents, expected utility in the treated

areas increases. Expected utility also increases in the untreated areas since the relocation of

workers reduces congestion on the housing market. In our example, spatial incidence increases

spatial inequality in welfare. Applying a lower-bound penalty for inequality aversion following

Atkinson (1970) reduces the social welfare effect by 13%. This is an important insight for the

literature in the tradition of Rosen (1979)-Roback (1982) which has abstracted from a potential

efficiency-equity trade-off by assuming perfect spatial arbitrage.

The remainder of the paper is structured as follows. Section B presents stylised evidence

that guides our modelling choices. Section C outlines the model. Section D describes the

quantification of the model. Section E compares our new QoL index to the canonical measure in

the literature. Section F shows how to use the model for policy analysis. Section G concludes.

4Much of the place-based policy focuses on reduced-form methods to provide causal evidence (Kline and
Moretti, 2013, 2014; Criscuolo et al., 2019). See Neumark and Simpson (2015) for a recent summary.
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B Stylised facts

To motivate the structure of the model developed in Section C, we present some stylised facts

of a spatial economy in Figure 1 using data that we describe in Section D.1. The upper panels

show how spatial concentration is associated with benefits due to agglomeration economies

on labour markets (a) and costs due to congestion on housing markets (b). Intuitively, the

strengths of these agglomeration and dispersion forces determine the spatial concentration of

economic activity.

In the middle panels, we turn to causes and consequences of migration. There is a posi-

tive association between the wage a local labour market offers and the number of workers it

attracts (c). At the same time there is a positive association between net in-migration into

labour markets and changes in local housing cost (d). This descriptive evidence supports some

important assumptions that are implicit to the notion of a spatial equilibrium and the idea

of spatial arbitrage. First, workers are at least imperfectly mobile and respond to economic

incentives when making location decisions. Second, due to inelastic supply of land, migration

into attractive destinations leads to rising house prices and mean reversion in the attractiveness

of locations.

Yet, the bottom panels of Figure 1 reveal that workers are not perfectly mobile. The average

worker changes the labour market region about once (1.08) over the employment biography,

although there is some variation across groups (e). Conditional on migrating, the propensity of

a location becoming a migration destination declines rapidly in space, which points to spatially

variant migration costs (f).

Motivated by these stylised facts, we develop a model in which imperfectly mobile workers

trade off expected utility at migration destinations against migration costs. In-migration re-

duces incentives to migrate into a region since the cost of agglomeration exceeds the benefit,

so that in the absence of shocks, the spatial economy tends to revert to a stationary spatial

equilibrium.

C Model

Consider an economy that is populated by L̄ =
∑

θ L̄
θ workers who we categorise into groups

θ ∈ Θ (e.g. according to age, gender, skill) and who supply one unit of labour inelastically.

Individuals choose their place of residence and work among i, j ∈ J local labour markets to

which we refer as regions. Workers in i have idiosyncratic tastes for living in j and incur a

cost when migrating from i to j. Each region is endowed with a measure T̄i of land used for

housing.
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Figure 1: Stylized facts of the spatial economy

(a) Agglomeration benefits (b) Agglomeration costs

(c) Wages and migration (d) Migration and housing costs

(e) Number of moves in employment biography (f) Spatial decay in migration flows

Note: Unit of observation in panels (a)-(d) is 141 labour market areas as defined by Kosfeld and Werner (2012). Residu-
alised variables have been purged of mean differences between East and West German regions. Panel (e) uses all workers
observed in at least 35 years over at least 40 years starting in 1975 (in West Germany). A ”move” is a change in local
labour market. Outcomes in panels (a-d) are residualised in regressions against zone (for former East and West Germany)
fixed effects. Panel (f) is based on 5km-bins of bilateral distance between labour market regions. Sub-section D.1 provides
a description of the underlying variables.
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C.1 Workers

Individual ω belonging to group θ, living in region i at time period t, and previously living in

region k derives utility from the consumption of a freely-tradable homogeneous good (xθi,t(ω)),

housing (hθi,t(ω)) and amenities (Aθi,t, exp[aθki,t(ω)]) according to

U θi|k,t(ω) =

(
xθi,t(ω)

α

)α(
hθi,t(ω)

1− α

)1−α

Aθi,t exp
[
aθki,t(ω)− τ θki

]
. (1)

The Cobb-Douglas structure implies that individuals spend constant shares α and 1 − α
of their income on the tradable good and housing. Normalising the price of the homogeneous

good to unity, pi,t represents the relative price of housing in region i. We then obtain the

demand functions

xθi,t(ω) = α(1− ι)wθi,t(ω)

hθi,t(ω) =
(1− α)(1− ι)wθi,t(ω)

pi,t
, (2)

where ι denotes the federal income tax rate and wθi,t(ω) are gross wages for an individual ω in

group θ in region i.

Migration from k to i comes at a time-invariant cost that depreciates utility in the moving

period to exp
[
−τ θki

]
, with τ θki ≥ 0 and τ θk,i=k = 0. Since we allow for arbitrary group-origin-

destination-specific migration costs, we can remain agnostic about the exact nature of this

cost. An intuitive interpretation is the cost of rebuilding social capital (Glaeser et al., 2002)

which may depend on how closely two regions are connected geographically, culturally (Falck

et al., 2012), or socially (Bailey et al., 2018).

The composite amenity consists of two components. The first component is QoL, an ex-

ogenous group-region utility shifter that collects the group-specific effects of region-specific

(dis)amenities:

Aθi,t = ζθt Ā
θ
i,t, (3)

where ζθt is a group-period-specific constant and Āθi,t is a relative QoL measure with a within-

group mean of one. The second component exp[aθki,t(ω)] is a stochastic bilateral amenity shock,

with aθki,t(ω) being drawn from a type-I-extreme value (Gumbel) distribution

F θki,t(a) = exp
(
−B̃θ

ki,t exp {−
[
γθa+ Γ

]
}
)

∀ θ and γθ > 0, (4)

where B̃θ
ki,t ≡

(
Bθ
ki,t

)γθ
. With this formulation, we follow the multinomial logit model of

discrete response (McFadden and Train, 2000) and allow for a group-specific mean and a

group-specific variance of the amenity shock. ln(Bθ
ki,t) is the time-varying, group-specific mean
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of the amenity shock and Γ is the Euler-Mascheroni constant.5 γθ governs the group-specific

dispersion of individual amenity shocks.

Amenity shocks are conceptually important and essential for the tractability of the model.

The bilateral group-year component Bθ
ki,t captures common trends such as downtown gentri-

fication that make specific pairs of locations closer substitutes for certain groups in certain

periods. Since we view migration cost as time-invariant, this is important to rationalise migra-

tion flows that vary over time within groups and bilateral region pairs even if wages, rents, and

QoL remain constant. The heterogeneity of shocks within groups allows for some idiosyncrasy

in tastes for being in i among workers of group θ from k. Unless we are in the limit case

γθ →∞ and tastes are homogeneous, there will be some workers within a group who will have

decided to migrate from k to i for given wages, rents, QoL, and migration costs, while others

did not. Hence, spatial arbitrage is imperfect in the real world and in our model.

C.2 Production

Tradable good. Firms produce the tradable good under perfect competition using labour

as their only input. Following the conventions in urban economics (Combes and Gobillon,

2015) we model the productivity of individuals, ϕθi,t(ω), as dependent on location factors that

are exogenous to our model (e.g. access to navigable rivers), endogenous agglomeration (em-

ployment density), and an individual effect that consists of time-invariant (innate skill) and

time-varying (e.g. employment status) factors:

ϕθi,t(ω) = ψθi,t

(
Li,t
T̄i

)κθ
δθi,t(ω), (5)

where δθi,t(ω) summarises idiosyncratic determinants of productivity and the group-region pro-

ductivity ϕθi,t = ψθi,t(
Li,t
T̄i

)κ
θ

depends on an exogenous component ψθi,t and on density Li,t/T̄i.

Prompted by evidence on skill-biased returns to agglomeration (Baum-Snow and Pavan, 2013),

we allow the density elasticity of productivity κθ ≥ 0 to vary across groups. Similarly, each

group is equipped with a location-specific exogenous productivity ψθi,t to capture any com-

plementarity between skills and exogenous location factors, such as an airport that allows

high-skilled workers to quickly travel to business meetings.

We assume that firms only observe the average productivity per group, so we impose δθi,t(ω)

to be a log-normally distributed error term of mean zero for the sake of simplicity. As the price

serves as the numeraire, the first-order condition of labour demand implies that group-region

productivity ϕθi,t directly maps into wages:

wθi,t = ψθi,t

(
Li,t
T̄i

)κθ
. (6)

5This implies that shocks are i.i.d across locations, individuals, and time. This approach is established in
the literature and has been applied to describe productivity distributions, e.g. as in Eaton and Kortum (2002),
or individual preferences, e.g. as in Ahlfeldt et al. (2015).
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Total output (equal to revenues and nominal income) in i is then given by Xi,t =
∑

θ L
θ
i,tϕ

θ
i,t.

Housing Profit-maximizing developers supply housing under perfect competition according

to a Cobb-Douglas production function combining a share of the globally available capital stock

with location-specific land:

HS
i,t = ηi,t

(
T̄i
β

)β (
Ki,t

1− β

)1−β
, (7)

where Ki,t is the capital used in region i and ηi,t denotes total factor housing productivity,

capturing the role of regulatory (e.g. height regulations) and physical (e.g. a rugged surface)

constraints (Saiz, 2010). Owners of employed capital and land are absent so their income is

irrelevant for local demand. Normalising the world price of capital to unity and assuming that

developers make zero profits and housing markets clear, we obtain

pi,t =

(1− α)β(1− ι)Xi,t

η
1
β

i,tT̄i

β

. (8)

This formulation implies that both capital input and housing prices are increasing in housing

expenditure, and that pi,t is lower in locations with more land supply and higher housing

productivity, ceteris paribus. The larger the share of land in housing β, the smaller the housing

supply elasticity (1− β)/β, and the greater the congestion force the housing market generates

(see Appendix J.1 for details).

C.3 Migration and timing

Our approach to modelling migration decisions draws from financial economics. Intuitively,

we model migration as an investment decision in which expected returns in the form of utility

flows are traded against a migration cost, e.g. for rebuilding social capital at a potential

destination. The timing is as follows. Throughout period t, workers living in i realise their

k-i-worker-specific utility. At the end of period t, workers receive i-j-worker-specific amenity

shocks introduced in Section C.1. At the beginning of period t + 1 workers choose location

j ∈ J such that they maximize their expected utility. Then, the procedure starts over again.

In line with the conventions in the emerging DSM literature (Caliendo et al., 2019b), we

assume that workers have logarithmic preferences. This gives a migration net present value

(NPV) for a worker of type θ who was in region k in period t − 1, is in region i in period t,

considers moving to region j in period t+ 1 and expects to be in regions {m, ..., n ∈ J} in the
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subsequent periods and in h ∈ J from (t+ 1) + T onward (see Appendix J.2 for derivations):

lnNPV θ
i|k,t(ω) = ln

(
vθi|k,t(ω)

)
+ max
{j,m,...,n,h}Jj,m,...,n,h=1

{ 1

1 + ρ
ln
(
vθj|i,t+1(ω)

)
(9)

+

(
1

1 + ρ

)2

E
[
ln
(
vθm|j,t+2(ω)

)]
+ . . .+

(
1

1 + ρ

)T+1
[
E
[
ln
(
vθh|n,(t+1)+T (ω)

)]
+

∞∑
s=(t+2)+T

(
1

1 + ρ

)s−(t+1+T )

E
[
ln
(
vθh|h,(t+2)+T (ω)

)]]}
,

where ρ is a discount rate monitoring the time preference, and vθi|k,t(ω) is the per-period

indirect utility defined by Eqs. (1) and (2). Intuitively, the NPV depends on future wages,

rents, and QoL in the next and all subsequent migration destinations, the probabilities at

which subsequent migration destinations will be accessed, and the migration cost at which the

next and the subsequent destinations can be accessed.

Given the distributional assumption regarding the idiosyncratic amenity component, we

obtain the following conditional probability that a worker from group θ migrates from i to j

(see Appendix J.3 for derivations):

χθij|i,t =

(
mθ
ijB

θ
ij,t+1Vθj,t+1

)γθ
∑

n∈J

(
mθ
inB

θ
in,t+1Vθn,t+1

)γθ , (10)

where mθ
ij = exp

[
−τ θij

]
and Vθj,t+1 = exp

[
ln

(
(1−ι)wθj,t+1A

θ
j,t+1

p1−αj,t+1

)
+Oθj,t+2

]
is a function of next

period’s utility as well as the migration option value Oθt+2.

This migration option value at j in t+ 1 is an expected NPV of utility a worker can attain

at any location m ∈ J in period t+ 2, weighted by the expected probability to migrate from j

to m. The expected utility at m in t+ 2 itself depends on the migration option value Oθm,t+3

a worker expects at that destination. Similarly, all future migration option values up until

the next-to-last location n ∈ J reached in period t + T enter the equation. Intuitively, the

migration option value Oθj+2 captures the ease at which migration destinations can be accessed

in the future should there be idiosyncratic reasons to relocate, e.g. a new romance:

Oθj,t+2 =
1

1 + ρ
ln
[ ∑
m∈J

(
exp

{
E
[
vθm|j,t+2(ω)

]
+Oθm,t+3

[
Oθl,t+4...Oθn,(t+1)+T

]})γθ ] 1

γθ (11)

Migration flows from i to j are simply given by M θ
ij,t = χθij|i,tL

θ
i,t. Since all workers migrate

to a destination in period t (which can be the origin), aggregate employment in region i in t+1

equates to the sum of inflows M θ
ji,t from all locations j:

Lθi,t+1 =
∑
j∈J

M θ
ji,t =

∑
j∈J

χθji|j,tL
θ
j,t. (12)
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Eq. (10) provides the micro-foundations for a migration gravity equation with a destination-

group-specific present value of future utilities Vθj,t+1, origin-destination-group-specific migration

costs τ θij and bilateral amenity shocks Bθ
ij,t+1, and an origin-group-specific component akin to

the multilateral resistance known from trade models (the denominator). Via Vθj,t+1, higher

wages, lower rents, a greater QoL and a larger migration option value at a potential destination

increase the probability that workers migrate to j.

The amenity dispersion parameter γθ can be interpreted as a migration elasticity as it

moderates how sensitive migration decisions are to economic incentives. At low values of

γθ, the idiosyncrasy of tastes dominates and migration is inelastic whereas at high values

difference in wages, rents, and QoL have large effects on migration flows. Migration costs τ θij
are critical to rationalising why physically, culturally, or socially close region pairs generate

larger migration flows. Since all τ θi,j 6=i ≥ 0 are defined relative to τ θi,j=i = 0, migration costs

critically determine the share of workers leaving a region in a period and, hence, the speed of

spatial adjustments in our DSM. Empirically, the effects of migration costs and the migration

elasticity are jointly determined by the origin-destination-group component τ θij × γθ, which we

term migration resistance. Therefore, the typically observed distance decay in migration flows

can be rationalised by a large difference in migration cost if tastes are heterogeneous (small

γθ) or a small difference in migration costs if tastes are homogeneous (large γθ).

It is immediate from Eq. (10) that there are isomorphic model formulations in which

bilateral amenity shocks Bθ
ij,t are subsumed into time-varying migration costs, or vice versa.

We choose our parameterisation because we believe that differences in average migration flows

observed over 25 years in our data are most likely driven by fundamental determinants of

migration costs that hardly change over time, whereas deviations from the long-run average

most likely reflect the short-run effects of random events that tend to cancel out over time.

C.4 Equilibrium

We take the structural parameters {α, β, ρ, ι, γθ, κθ, Bθ
ij,t, τ

θ
ij}, structural fundamentals {ψθi,t,

ηi,t, A
θ
i,t}, and labour and land endowments {L̄θt , T̄i} as exogenously given. We impose the

following labour market clearing conditions:

L̄θt =
∑
i∈J

Lθi,t (13)

with the economy-wide labour endowment L̄t =
∑

θ L̄
θ
t . Region-group specific labour supply

determined by Eq. (12) aggregates to regional employment Li,t =
∑

θ L
θ
i,t which maps into

wages wθi,t via the first-order condition of labour demand, Eq. (6). Likewise, we impose housing

market clearing so that regional employment Lθi,t maps into rents pi,t via output Xi,t according

to Eq. (8) (see Appendix Section J.1). Trade with the rest of the world clears the markets for

tradable goods and capital inputs.
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Transitory spatial equilibrium. Frictional migration implies that shocks to structural

fundamentals lead to non-instantaneous adjustment in Lθi,t. The role of the TSE is to rationalise

unbalanced migration flows and non-stationary employment that are typically observed in data.

Stationary spatial equilibrium. Migration is spatially neutral if the sum of outflows equals

the sum of inflows for each location:∑
j∈J

χθij|i,tL
θ
i,t =

∑
j∈J

χθji|j,tL
θ
j,t ∀ j ∈ J, θ ∈ Θ. (14)

This condition enforces that Lθi,t is stationary, but it does not rule out migration due to idiosyn-

cratic taste shocks. We assume that the congestion force dominates the agglomeration force to

ensure that all regions are populated. The latter is governed by κθ for each group according to

Eq. (6). The former works through the price for housing as described by Eq. (8). The effect

of changes in population on individual housing expenditure is given by (1− α)∂pi,t/∂L
θ
i,t. We

relegate details to Appendix J.4 where we also show that the economy converges to a unique

SSE for given primitives. Since Eq. (14) is unlikely to hold in the data, we view the SSE

as a counterfactual situation to which an economy observed in a TSE would converge in the

absence of further shocks.

Dynamic equilibrium. For given structural parameters and structural fundamentals the

dynamic equilibrium of the model is referenced by a (J ×Θ) ×Zt vector of region-group-year-

specific employment Lθi,t, where Zt denotes the number of periods in the transition period from

a TSE in t to the SSE reached in t + Zt. Hence, the dynamic equilibrium nests the SSE and

all TSEs up to the period where the spatial economy has converged to the SSE. For given

structural fundamentals {ψθit , ηi,t}, Lθi,t maps to (J ×Θ) ×Zt vectors of wages wθ
i,t and prices

pi,t via the first-order condition of labour demand, Eq. (6), and housing market clearing, Eq.

(8).

Competitive spatial equilibrium. Characteristic for the CSE is the absence of spatial

frictions. Within our framework, we can remove frictions by setting preference shocks and

migration costs to zero (aθki,t(ω) = 0, τ θki = 0). Since workers optimally relocate across locations

within any period, we can impose the standard spatial equilibrium condition that workers are

indifferent between locations. To this end, we set the indirect utility equal to a group-time-

specific reservation utility Ū θt .

V θ
i,t =

(
(1− ι)wθi,t

)α((1− ι)wθi,t
pi,t

)1−α

Aθi,t = Ū θt (15)

Hence, observed wages and rents directly map to a Rosen-Roback (RR) QoL measure Aθi,t =

qθt p
1−α
i,t /wθi,t (where qθt collects all group-period-specific constants).
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C.5 Worker expectations

In specifying how agents form expectations in DSMs, there is a trade-off between foresight and

tractability. Desmet et al. (2018) develop a fully tractable DSM under static expectations,

i.e. workers project current realizations of good and factor prices into the infinite future. In

contrast, Caliendo et al. (2019b) exploit Bellman’s principle to estimate model parameters and

conduct counterfactual analyses under perfect foresight without pinning down all primitives.

We marry both approaches with the aim of incorporating forward-looking expectations into a

model where all structural parameters and fundamentals will be quantified.

Our choices are guided by the stylised fact that the average worker switches between local

labour market only once over the entire employment biography (see Section B). For the quan-

tification of the model, we therefore assume that workers deciding on a migration destination

j do not expect to make a further move in the future. Workers who expect to migrate only

once likely form sophisticated expectations with respect to the evolution of wages and rents.

Therefore, we assume that workers correctly anticipate the dynamic equilibrium referenced by

the employment vector Lθi,t and all model-endogenous adjustments in wages and prices sum-

marised by wθ
i,t and pi,t. Shocks to exogenous structural fundamentals cannot be anticipated,

so workers project observed realisations of QoL Aθi,t+1 into the future. Consistent with the

distributional assumptions in Eq. (4), workers expect a bilateral amenity E(Bθ
ij,t+s) = 1 for

s > 1. In line with the conventions in DSMs, workers have an infinite time horizon and do not

expect to age.

The assumption that workers do not expect to re-optimise their location choice in the

future delivers a special case in which we can abstract from the migration option value Oθj,t+2

in Eq. (10) (see Appendix J.3 for details). To evaluate the role of expectations in a DSM, we

replicate the main stages of our quantitative analyses under more and less restrictive special

cases. In a less restrictive special case, we allow residents to anticipate one additional migration

decision subsequent to an initial migration decision, which results in a migration option value

Oθj,t+2 that does not depend on the option value Oθm,t+3. This special case covers nearly 90%

of German workers who migrate twice or less over their employment biography. Extending

expectations to additional future migration decisions results in a dimensionality problem in

the inversion of structural fundamentals as highlighted by Caliendo et al. (2019b). In a more

restrictive special case, we assume that workers are myopic and expect goods and factor prices

to remain constant in real terms. We provide a detailed discussion of the motivations for and

the consequences of our choices concerning expectations in Appendix N. The main takeaway

is that the choice has moderate effects on the quantitative predictions of the model. This is

an important insight as it suggests that even the seemingly restrictive assumption of myopic

agents may represent a sensible approximation in high-dimensional settings such as in Desmet

et al. (2018) or Conte et al. (2020). Among the considered special cases, we choose the one for

the quantitative analyses in the main paper that delivers the most conservative quantitative

results.
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C.6 Spatial arbitrage

The CSE is the urban economics equivalent of the no-arbitrage condition in financial economics

(Glaeser, 2008). Perfect spatial arbitrage is an assumption that leads to constant reservation

utility as a building block of neoclassical urban economics models. In contrast, spatial arbitrage

is an endogenous process in our DSM that moderates the transition from the TSE to a SSE.

Intuitively, shocks to structural fundamentals affect expected utility directly or indirectly.

For example, a positive shock to labour productivity maps into higher wages wθi,t+s according to

Eq. (6) due to perfect competition on goods and labour markets and the choice of the tradable

good as the numeraire. Likewise, a positive shock to housing productivity maps into lower

housing costs pi,t+s according to Eq. (8) due to perfect competition among developers. Higher

wθi,t+s and lower pi,t+s affect bilateral migration probabilities χθij|i,t according to Eq. (10),

leading to in-migration. Given Eq. (12), this results in endogenous changes in employment

which in turn determine changes in wages according to Eq. (6) and housing costs according

to Eq. (8). As long as agglomeration costs exceed agglomeration benefits at the margin, the

consequence of migration is to reduce the differences in expected utility that cause migration.

The pace at which this spatial arbitrage process takes place depends positively on the migration

elasticity γθ and negatively on migration costs τ θij . Eqs. (10) and (12) establish how regions

offering a greater indirect utility Vθj,t+1 will experience larger net-immigration the larger γθ and

the smaller the migration resistance τ θij × γθ, ceteris paribus.

C.7 Quality-of-life premiums

The revealed-preference literature computes the value of amenities that jointly constitute QoL

via spatial differences in real living cost p1−α
i /wθi , the inverse of the real wage (Rosen, 1979;

Roback, 1982). Using the structural parameters and fundamentals quantified in Section D,

Figure 2 provides a graphical illustration of the simulated model to show how QoL premiums

are determined. Our case in point is the urban QoL premium which captures how QoL depends

on city size, a question that is controversially debated in the literature (Albouy, 2011). To ease

the presentation, we focus on the special case with one worker group and refer to Appendix

J.5 for formal derivations.

Figure 2 depicts two equilibrium loci for locations i = {1, 2}. The solid lines refer to location

1 while the dashed schedules indicate location 2. The housing equilibrium locus (HHi) is a

log-linearised version of Eq. (8) collecting all combinations of real living costs and employment

that satisfy all housing-market related conditions that must hold in the TSE (and the SSE).

Under plausible parameterisations, the expenditure on housing increases faster in city size (due

to inelastically supplied land) than the wage (due to agglomeration economies). Therefore,

the housing equilibrium locus is positively sloped. Greater housing productivity ηi shifts the

housing equilibrium locus downwards.

Likewise, the migration equilibrium locus (LLi) collects all combinations of real living costs

and employment that satisfy all migration-related conditions that must hold in the SSE. It is

derived from Eq. (12). Intuitively, the migration equilibrium locus is downward sloping since
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the preference of the marginal resident joining the city decreases as city size increases due

to taste heterogeneity (Arnott and Stiglitz, 1979; Moretti, 2011). The slope of the migration

equilibrium locus is inversely related to the migration elasticity γθ. Higher QoL Aθi shifts the

migration equilibrium locus upwards. The intersection of both equilibrium loci is the only

combination of real wages and employment that satisfies all SSE equilibrium conditions and,

hence, we can use it to quantify the model and derive QoL premiums.

The two vertical dashed lines mark two cities of different size with L2 > L1. Housing

productivity ηi is higher in the larger city, which gives the city an edge in the competition for

workers since the housing sector provides more housing at the same equilibrium price (HH2 is

below HH1). Yet, despite the housing productivity advantage, the city size differential can only

be rationalised by a greater labour supply in the larger city and an upward-shifted migration

equilibrium locus (LL2 vs. LL1). Intuitively, the lower idiosyncratic amenity of the marginal

resident must be compensated for by a higher average group-specific QoL Aθi in the larger city.

Hence, there is a positive urban QoL premium.

With decreasing taste heterogeneity, the migration elasticity γθ increases, the slope of

the migration equilibrium flattens, and the urban QoL premium shrinks. For the limit case

γθ −→ ∞, our model nests the canonical CSE framework in which the migration equilibrium

locus is simply a horizontal line shifted by Aθi (see Eq. (15)). The corresponding migration

equilibrium schedules are described by LLCSEi . In the given example, because the larger city

has a fundamental housing productivity advantage, we qualitatively misrepresent the urban

QoL premium if we abstract from taste heterogeneity.

The important takeaway is that the urban QoL premium in the DSM with taste hetero-

geneity is necessarily more positive than in the canonical spatial equilibrium framework unless

the migration elasticity γθ is large. More generally, we necessarily recover larger QoL differ-

entials from a model with taste heterogeneity. Since, consistent with the literature (Caliendo

et al., 2019b), we estimate relatively low values of γθ for all groups, we expect our quanti-

tative framework to deliver larger valuations of local non-marketed goods than the canonical

Rosen-Roback framework.

D Quantification

The quantification of the model consists of two steps. First, we obtain values of the structural

parameters {α, β, ρ, ι, γθ, κθ, Bθ
ij,t, τ

θ
ij}. We borrow {α, ι, ρ} from the literature and estimate

the remaining parameters using variables observed in data {Lθi,t, T̄i, wθi,t, χθij|i,t, pi,t} and the

structure of the model. Second, we use data, the estimated parameter values, and the structure

of the model to invert the structural fundamentals {ψθi,t, ηi,t, Aθi,t} and to solve for the region-

group-time-specific employment vector Lθi,t that references the dynamic equilibrium.
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Figure 2: Urban quality of life premium

Notes: A formal derivation of demand and supply shifters and elasticities is in Appendix J.5. We use parameter values
γ = 0.5 and β = 0.2 which are within the range of estimates in the literature and our own estimates in Section D. We use
the structural fundamentals quantified in Section D. To ease the presentation, we derive all curves for one worker group
(middle-aged, skilled male workers) exclusively.

D.1 Data

As an empirical correspondent to locations indexed by i in the model, we choose 141 German

labour market regions defined by Kosfeld and Werner (2012) based on commuting data. The

centre of a labour market region is the municipality with the largest number of workers. We

treat periods t in our model as years in the data. We briefly discuss the sources and processing

of our data below and refer to Appendix K.1 for details.

Employment. Our measure of employment Lθi,t is constructed from the Employment History

(BeH) covering the years 1993-2017. This dataset is provided by the Institute of Employment

Research (IAB) and contains information on the universe of employees in Germany (with the

exception of civil servants and the self-employed) on a daily basis. We only select those workers

who are employed subject to social security contributions (including apprentices) and compute

region-year-specific employment levels for different groups which are defined according to the

interactions between sex, three skill categories (no apprenticeship, completed apprenticeship

and tertiary education) and three age categories (16-30 years, 31-50 years and 51-65 years).

Migration. We assign workers to labour market regions using their place of employment

as reported in the BeH. Bilateral group-specific migration flows M θ
ij,t are then constructed by

computing the number of workers belonging to group θ who were employed in region i in year

t and in region j in year t + 1. The conditional migration probabilities are then observed as

χθij|i,t = M θ
ij,t/L

θ
i,t.
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Wages. We follow the standard approach in labour and urban economics and identify the

region-group-year wage wθi,t from movers by regressing individual wages against region-group-

year fixed effects, controlling for individual fixed effects (Abowd et al., 1999; Combes et al.,

2008). We use matched employer-employee data including nominal wages from the IAB cover-

ing the universe of German workers and establishments from 1993 to 2017.

Rents. We follow Combes et al. (2019) and compute a house price index for a representative

property at the centre of a labour market area. Assuming a monocentric region, this is the

only location where we can abstract from commuting costs when inferring QoL (Albouy and

Lue, 2015). The price index maps into rent pi via a constant cap rate of 0.035 (Koster and

Pinchbeck, 2021). The property micro data we use is from Immoscout24 covering more than

16.5 million sales proposals for apartments and houses between 2007-2017. The data were

accessed via the FDZ-Ruhr (Boelmann and Schaffner, 2019).

Geographic variables. We use a geographic information system (GIS) to compute the land

area T̄i of all regions and the great circle distance between all pairs of regions. For a cultural

distance measure, we use the inverse of the county-based dialect similarity index by Falck et

al. (2012), which we aggregate to labour markets.

Big data. We use social media data from Facebook, Flickr, and Picasa to approximate

regional amenity value and social connectedness. We use those data to over-identify estimated

structural parameters and inverted structural fundamentals.

Location characteristic. For our policy application, we collect the concentration of partic-

ular matter (PM10), the spatial distribution of coal deposits, the locations of coal power plants,

and the distribution of winds by direction for all regions. We also collect a comprehensive data

set on fundamental first-nature characteristics that potentially affect productivity (e.g. access

to navigable rivers), amenity (e.g. opera houses, World War II destruction), and housing TFP

(e.g. physical constraints to development).

D.2 Structural parameters

We set the housing expenditure share to 1 − α = 0.33, which is in line with a literature sum-

marised in Ahlfeldt and Pietrostefani (2019) and official data from Germany (Statistisches

Bundesamt, 2020). We use a tax rate of ι = 0.49 which incorporates social insurance contri-

butions that are proportionate to income in Germany (OECD, 2017). Likewise, we set the

intertemporal discount rate to ρ = 0.11 following the economics literature on time-preferences

(Moore and Viscusi, 1988; Frederick et al., 2002). Lastly, we impose that stayers face no

migration cost (τ θij=i = 0).

We estimate all other parameters using estimation equations that we derive from the struc-

ture of the model. For identification, we generally follow the current best-practice examples in

the respective fields. Our main empirical contribution is to exploit our rich data to account for

18



greater inter-group heterogeneity than in previous work. We briefly discuss the parameter val-

ues along with references to the identification strategies and the relevant literature below. For

a formal derivation of all estimation equations and full estimation results we refer to Appendix

K.2.

Density elasticity of productivity (κθ). The estimating equation for κθ is a log-linearised

version of Eq. (5). Identification comes from between-labour-market-area movers and is condi-

tional on individual effects (Combes et al., 2008). We use a 100-year lag of population density

following a literature that argues that production fundamentals that determined productivity

in history are no longer relevant today (Ciccone and Hall, 1996). With this approach, we

estimate the agglomeration elasticity for Θ = 18 groups and find that returns to agglomeration

(κθ) are not only biased with respect to skills (Baum-Snow and Pavan, 2013), but also gender,

with women benefiting more from agglomeration. The weighted average elasticity estimate of

0.024 is close to the typical result in the literature (Combes and Gobillon, 2015).

Land share (β). The estimating equation for β is a log-linearised version of Eq. (8). The

estimation equation is similar to the one in Combes et al. (2019), although, following from

our general equilibrium setting, the main independent variable is GDP density rather than

population. Following the literature we, again, use the 100-year lag of population density as

an instrument. Our estimate of β = 0.18 implies a population density elasticity of house prices

of 0.2, which is within the typical range in the literature (Ahlfeldt and Pietrostefani, 2019).

The implied intensive-margin housing supply elasticity (1 − β)/β = 4.2 is close to existing

structural estimates (Epple et al., 2010).

Migration elasticity (γθ). The estimating equation for γθ is a log-linearised and spatially

differenced version of Eq. (10) in which leading migration probabilities control for future utility

flows according to the Bellmann’s principle (Artuç et al., 2010). We follow the literature and

estimate γθ using GMM. In our preferred approach, we restrict the identifying variation to

lagged group-specific average wage differences between eastern and western states that likely

capture a legacy of the cold-war era. The estimated average elasticity of 0.3 is somewhat larger

than when we use the standard IVs (lagged wage and migration probabilities), but somewhat

smaller than previous estimates for the U.S. (Caliendo et al., 2019a). Novel to the literature

using this estimation approach, we find that middle-aged and middle-skilled male workers are

those that are most responsive to economic migration incentives.

Migration costs (τ θij). The estimating equation for τ θij is a log-linearised version of Eq.

(10) using a PPML estimator. Destination-group-year and origin-group-year effects control for

arbitrary pull factors and multilateral resistance (Head and Mayer, 2014). Exploiting the panel-

dimension, origin-destination-time effects non-parametrically identify origin-destination-group-

specific migration resistance τ θij × γθ up to a constant. Exploiting the no-internal-migration-

cost constraint τ θi,j=i = 0, we derive theory-consistent estimates of τ θij for given values of γθ.
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Female, old, and middle-skilled workers have the largest resistance to migrate. Yet, middle-

skilled workers experience low migration costs. Because their tastes are relatively homogeneous

(large γθ), small differences in migration costs rationalise large differences in migration flows.

In monetary terms, the weighted average migration cost corresponds to about e170K which

is more than revealed in survey-based research for the average U.S. citizen, though much less

than for those who report themselves as “rooted” (Koşar et al., 2021).

Bilateral amenity. The estimating equation for Bθ
ij is the same gravity migration equation

from which we infer migration resistance τ θij × γθ. For given values of γθ, we infer Bθ
ij from the

structural residual. Consistent with theory, we rationalise migration flows of zero by setting

Bθ
ij = 0.

D.3 Structural fundamentals

Labour and housing productivity. Given our estimates of the agglomeration elasticity κθ

and observed wages wθi,t, regional employment
∑

θ L
θ
i,t, and land area T̄i, we invert fundamental

labour productivity ψi,t using the first-order condition of labour demand, Eq. (6). Likewise,

we use our estimate of the land share β and observed rents pi,t, output
∑

θ w
θ
i,tL

θ
i,t and land

area T̄i to invert fundamental housing productivity ηi,t using housing market clearing, Eq. (8).

Quality of life. Owing to the dynamic structure of our model, the inversion of QoL Aθi,t
is less straightforward. Given observed data on conditional migration probabilities χθij|i,t and

estimates of bilateral amenities Bθ
ij,t, migration costs τ θij and the migration elasticity γθ, we

can invert the within-group QoL Āθi,t up to the group-year constant ζθt for a given dynamic

employment vector Lθi,t that determines future wages wθi,t+s and rents pi,t+s (see Section C.4)

using the migration gravity Eq. (10). However, to forecast Lθi,t using the dynamic structure of

the model, we require values of Āθi,t that feed into labour supply, Eq. (12), via the migration

gravity Eq. (10).

Therefore, we solve for the endogenous employment vector Lθi,t that references the dynamic

spatial equilibrium and the exogenous structural fundamental Āθi,t simultaneously. To this end,

we use a nested dynamic programming algorithm to which we refer as dynamic solver for con-

venience. The dynamic solver consists of three components. First, a fixed-point programming

algorithm (FP) that delivers a numerical solution for Āθi,t (output) for given guessed values of

Lθi,t (input) using Eq. (10). Second, a dynamic programming algorithm (DP) which forecasts

Lθi,t (output) for guessed values of Āθi,t (input). The DP iterates over Eqs. (10), (12), (6) and

(8) to forecast χθij|i,t+s, L
θ
i,t+s+1, wθi,t+s+1, and pi,t+s+1 which feed into χθij|i,t+s+1 and Lθi,t+s+2

until Lθi,t+S is stationary. Third, an outer loop (OL) that nests the two other algorithms and

forwards the outputs from the FP as inputs to the DP and vice versa.

In taking the dynamic solver to the data, we set a time horizon of H = 1000 years which

exceeds the transition period to the SSE in all our applications. As initial guesses for the

employment vector Lθi,t
0

we use the values we observe in year t for which the model is being
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quantified:

Lθi,t
0

= Lθi,t, L
θ
i,t, ..., L

θ
i,t︸ ︷︷ ︸

H elements

.

Given Lθi,t
0
, we use the FP to generate starting values Āθi,t

0. We then start the OL where in

each iteration l the DP delivers an output Lθi,t
l

that is an input into the FP which in turn

delivers Āθi,t
l+1 as an output that serves as an input into the PF in the next iteration. In this

OL, we treat Lθi,t and Āθi,t as fixed points that are found in iteration L when the input into the

FP corresponds to the output from the DP and vice versa. Once the OL converges, we crop

Lθi,t
L

to the SL elements forecasted by the DF in the last iteration of the OL. Saving Aθi,t
L

concludes the quantification of the model. For further details on the dynamic solver, we refer

to Appendix K.3.

D.4 Transition into the stationary spatial equilibrium

Figure 3 exemplarily illustrates the transition path from the TSE observed in our data into

the SSE found by the dynamic solver introduced in Section D.3. For Berlin, Germany’s largest

local labour market, the model forecasts that employment would grow by 14% as the economy

transitions into the SSE if there were no further shocks to fundamentals. The average wage

would increase by about 0.8%. This would be more than the agglomeration-induced produc-

tivity effect and driven by a 5.4%-increase in the high-skilled share. The increase in housing

demand would map to a higher house price and lower housing consumption for all skill groups.

While it takes more than 700 years for group-region employment to become stationary,

almost all of the adjustment in Berlin takes place within the first 100 years. Zooming out, we

find that the sum of the absolute difference between TSE and SSE values across all groups and

regions shrinks by about 35% within the first 10 years, and by about 65% within the first 30

years, with some variation depending on the outcome (see Figure A8 in Appendix K.4).

The main takeaway from the aggregate outcomes in Table 1 is that during the transition

into the SSE workers of all skill groups relocate to local labour markets with higher QoL,

but lower density, on average. This tendency is strongest for the unskilled. The effect of

relocating to lower-density labour markets dominates the QoL-effect on housing cost, resulting

in a slight increase in housing consumption. In contrast, the high-skilled tend to remain in

denser labour markets, so that the effect of sorting into higher QoL labour markets dominates

and housing consumption decreases. The reduction in the weighted average density by 4%

leads to a mild reduction in aggregate output owing to lower agglomeration economies. A

comparison of the TSE to the SSE at the regional level reveals an increase in employment in

the eastern states by nearly one million workers (at the expense of the western states), partially

offsetting domestic migration during the first 25 years after the end of the Cold War era. This

increase in employment in the eastern states drives rents, but does not map to higher average

wages due to a moderate decrease in the high skilled share (see Appendix Section K.4).
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Figure 3: Transition from TSE into SSE in Berlin

Notes: Model-based forecasts using the dynamic solver introduced in Section D.3. 2017 starting values. Yearly gross
wage, skill shares and housing consumption are weighted by group shares.

D.5 Overidentification

To subject the model-derived structural parameters and fundamentals to a reality check, we

correlate fundamental labour productivity ψθi,t, fundamental housing productivity ηi,t and mi-

gration costs τ θij with observable characteristics not used in the quantification of the model.

The results are generally plausible. As an example, fundamental labour productivity is lower

in the eastern states, likely a legacy of the Cold War era, and where tradable services are

over-represented. Housing productivity is low in the mountainous region near the Alps where

the geography is less favorable for development. Migration costs increase in geographic and

social distance, consistent with greater costs of rebuilding social capital. Since the structural

fundamental Aθi,t is the focus of our analysis, we explore the correlation with observable char-

acteristics more extensively in the next section.

Inverting the model from the TSE observed in t = 2007 , we find that the model-based

forecasts of employment Lθi,t+s over the 2007-2017 period are positively correlated with observed

employment data. Conditional on region and year effects, a log-point increase in the out-of-

sample forecast of regional employment is associated with a 0.75-log-point increase in observed

employment, with a standard error of just 0.03. Hence, the model successfully captures a

mean reversion tendency that is a feature of the data. We refer to Appendix Section K.5 for

estimation results and a detailed discussion.

E Quality of life

In this section, we illustrate the spatial variation in the within-group measure of QoL, Āθi,t,

inverted from the DSM (DSM-QoL) and how it correlates with a range of amenity measures
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Table 1: TSE vs. SSE

Outcome TSE SSE Ratio

Output in bn. 1.058 1.056 0.998
QoL index 1.616 1.639 1.014
Weighted average density (emp./km2) 150.710 144.462 0.959
QoL index, unskilled 2.169 2.272 1.048
QoL index, skilled 1.412 1.414 1.002
QoL index, high-skilled 2.149 2.218 1.032
Weighted density, unskilled 167.221 161.940 0.968
Weighted density, skilled 143.493 136.149 0.949
Weighted density, high-skilled 170.666 168.040 0.985
Yearly wage (e), unskilled 23222 23239 1.001
Yearly wage (e), skilled 33804 33722 0.998
Yearly wage (e), high-skilled 50784 50773 1.000
Yearly housing cost (e/m2), unskilled 132.364 133.601 1.009
Yearly housing cost (e/m2), skilled 121.136 120.420 0.994
Yearly housing cost (e/m2), high-skilled 150.365 152.752 1.016
Housing consumption m2, unskilled 43.353 43.656 1.007
Housing consumption m2, skilled 70.165 70.489 1.005
Housing consumption m2, high-skilled 86.407 85.577 0.990

Notes: TSE values observed in the data except for QoL which is inverted using the
dynamic solver introduced in Section D.3. All SSE values are model-based forecasts
of the dynamic solver. QoL index is normalised within-group measure Āθi,t, weighted
by group-region employment Lθi,t

typically employed in the literature as well as a composite amenity index derived from ’big

data’. We provide a comparison to a Rosen-Roback type QoL measure Aθi,t (RR-QoL) and

evaluate how the migration elasticity γθ moderates the relationship between the two QoL

measures.

E.1 Spatial variation in quality of life

Two important stylised facts arise from a comparison of the two QoL measures in Figure 4.

First, the spatial distribution of QoL is similar, which is arguably reassuring. In particular,

there is a positive urban QoL premium. Large labour markets in Germany are not only good

places to work, but also good places to live. Second, there is significantly more variation

in DSM-QoL than in the canonical RR-QoL. This is consistent with our theoretical analysis

in Section C.7 and substantiated by Figure 5 which correlates the two QoL measures across

regions allowing for inter-group heterogeneity. For all 18 groups, RR-QoL increases less than

proportionately in DSM-QoL, confirming our theoretical prior that the canonical framework

understates QoL differentials if the migration elasticity γθ is low. The bias is quantitatively

large as group-specific regressions of lnAi,t=2017 against ln Āi,t=2017 yield point estimates in

the range of 0.16-0.45, with an unweighted mean of 0.27 (see Table A14 in Appendix L).
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Figure 4: Spatial variation in quality of life

(a) Dynamic model (Āi) (b) Rosen-Roback (Ai)

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Group adjustment in
auxiliary regressions of ln(QoL) against group and region fixed effects, the latter being shown on the maps.

E.2 Determinants of quality of life

Since Roback (1982), it is conventional to regress inverted QoL measures against regional

amenity variables to infer the value of amenities. In Table 2, we illustrate how the larger

variation in the DSM-QoL leads to larger utility effects of regional amenities. We begin by

considering the number of geo-tagged photos shared in social media as a “big data” composite

amenity index that was originally proposed by Ahlfeldt (2013) and has gained popularity

recently (Gaigné et al., 2017; Saiz et al., 2018; Carlino and Saiz, 2019). This measure assumes

that social media users share visually appealing content (e.g. distinctive architecture or scenic

views) or interesting activities (e.g. hiking tours or restaurant visits) that are related to a

location’s endowment with amenities (see Appendix K.1.7 for details). For the purpose of

overidentification of our DSM-QoL, the appealing feature of the big data amenity index is that

it does not rely on an arbitrary selection of observable characteristics that are more or less

readily available. A simple bi-variate log-linear pooled cross-sectional regression (excluding

group, region, or year effects) of the DSM-QoL on the amenity index explains almost 60% of

24



Figure 5: Rosen-Roback vs. DSM QoL estimates

Notes: 2017 values. Unit of observation is region-group. Thick dashed line is the 45-degree line. Model-based amenity
inverts QoL from a TSE assuming that agents have perfect foresight. Rosen-Roback assumes that the economy is in a
SSE without spatial frictions. We tabulate the slope parameters of the log-linear fits in Table A14 in the appendix.

the variation (Column 1). This high correlation simultaneously lends support to the DSM-

QoL and suggests that big data can be a similarly powerful predictor of QoL as lights at night

are for GDP (Henderson et al., 2012). The point estimate in Column (1) has a structural

interpretation in that it is the inverse of the QoL elasticity in the photo production function

(1/0.356 = 2.81), but it seems fair to assume that this large estimate is to some extent driven

by high QoL regions being more populated (see Appendix L.2 for further discussion).

In the next two columns, we use DSM-QoL in 2007 (Column 2) and 2017 (Column 3) as

dependent variables and add traditional amenity measures as explanatory variables, taking

inspiration from a literature that has been concerned with the role of city size (Albouy, 2011),

climate (Roback, 1982), crime (Linden and Rockoff, 2008), air pollution (Chay and Greenstone,

2005), as well as natural and consumption amenities (Glaeser et al., 2001). We use three supra-

regional dummy variables to capture the effects of fresh and rainy summers (near coast), cold

winters (near Alps), and the legacy of the Cold War era (East), none of which exhibits precisely

estimated effects. There is no persistent QoL effect of World War II bombings, consistent with

rapid mean reversion in city size documented by Brakman et al. (2004). We also do not find

significant effects for crime or bodies of water, likely because of limited variation across German

regions.

In contrast, the positive urban QoL premium suggested in Figure 4 is substantiated by

a precisely estimated employment elasticity of QoL of about 0.45 (Columns 2 and 3). The

employment effect on the DSM-QoL is about four times as large as on the RR-QoL (Columns

5 and 6), the latter being larger than found by Albouy (2011) for the U.S., but close to

the residential spillover effect found by Ahlfeldt et al. (2015) for Berlin. This comparison
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Table 2: Quality-of-life determinants

(1) (2) (3) (4) (5) (6)

Ln(Āθi ) Ln(Āθi ) Ln(Āθi ) Ln(Aθi ) Ln(Aθi ) Ln(Aθi )
All 2007 2017 All 2007 2017

Ln big data amenity 0.356∗∗∗ 0.114∗∗∗ 0.129∗∗∗ 0.054∗∗ 0.064∗∗∗ 0.058∗∗

(residualised) (0.02) (0.03) (0.04) (0.02) (0.02) (0.02)
Ln employment 0.409∗∗∗ 0.455∗∗∗ 0.096∗∗∗ 0.123∗∗∗

(0.04) (0.05) (0.02) (0.02)
Near Alps (dummy) -0.068 -0.016 -0.009 0.054

(0.06) (0.08) (0.05) (0.06)
Near coast (dummy) -0.090+ -0.050 -0.007 0.011

(0.06) (0.06) (0.04) (0.04)
East (dummy) -0.025 -0.024 0.037 0.008

(0.06) (0.06) (0.03) (0.04)
Ln crime per capita 0.027 -0.032 -0.032 -0.063

(0.06) (0.07) (0.04) (0.04)
Ln pollution -0.302∗ -0.402∗∗ -0.148 -0.223+

concentration (pm10) (0.16) (0.19) (0.10) (0.13)
Housing stock destroyed -0.001 -0.001 -0.000 -0.001
in WWII (%) (0.00) (0.00) (0.00) (0.00)
# Opera houses 0.059∗∗ 0.051∗ 0.009 0.010

(0.02) (0.03) (0.01) (0.02)
Ln water area 0.063∗ 0.064+ 0.024 0.030

(0.03) (0.04) (0.02) (0.02)
Ln area -0.072+ -0.085+ -0.005 -0.035

(0.05) (0.05) (0.03) (0.04)

Group effects - Yes Yes - Yes Yes
Observations 27918 2538 2538 27918 2538 2538
R2 .593 .737 .721 .0379 .458 .459

Notes: Unit of observation is group-region. OLS estimation. Ln(Āθi ) is the region-group amenity
shifter in the DSM developed in this paper. Ln(Aθi ) is the region-group amenity shifter implied
by the Rosen-Roback framework (see section C.4). Standard errors clustered on regions in (1) and
(4) and on regions and groups in all other columns. Big data amenity is the log of the number of
geotagged photos shared on social media (flick and picasa) residualised in regressions against all
other covariates reported in a column. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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highlights how in a quantitative model with preference heterogeneity, a high fundamental QoL

is required to rationalise why, for example, Berlin has almost 10 times the employment of the

average labour market. For Germany, the urban QoL premium is much larger than even the

unadjusted urban wage premium (see Figure 1, panel a), let alone the skill-adjusted urban

wage premium (see Section D.2).

The pollution effect illustrates how the same logic extends to non-marketed goods of imme-

diate policy interest. Descriptively, the DSM-QoL decreases in the concentration of particulate

matter at an elasticity of -0.4 (we turn to causal effects in Section F). For the RR-QoL the

estimated elasticity is not even half as large. Hence, the case for preserving clean air is signif-

icantly stronger if we account for frictional migration. This finding is consistent with previous

evidence by Luechinger (2009), who finds larger pollution effects on life satisfaction than on

house prices, and Bayer et al. (2009), who show that the willingness to pay for clean air is

larger in a discrete choice model allowing for mobility cost than in a conventional hedonic

model. The same conclusion extends to cultural amenities as opera houses are more strongly

positively associated with the DSM-QoL measure than with the RR-QoL measure.

To ensure that the big data amenity captures the effects of unobserved QoL determinants,

exclusively, we residualise the measure in auxiliary regressions against all covariates in Columns

(2-3) and (5-6). While the point estimate drops, in particular in the DSM-QoL models, it

remains statistically and economically significant, highlighting the role big data can play in

controlling for QoL determinants that are difficult to observe.

E.3 The role of the migration elasticity

To evaluate how sensitive the relationship between DSM-QoL and RR-QoL is to the choice

of the migration elasticity, we quantify the model under varying group-independent values for

γ. The left panel of Figure 6 confirms the theoretical expectation that DSM-QoL approaches

RR-QoL for large values of γ (see Section C.7). If one is willing to believe that γ ≥ 3, the

elasticity of RR-QoL with respect to DSM-QoL exceeds 0.8. The R2 of a log-linear regression

then exceeds 0.9. For smaller values suggested by the empirical literature, however, a small

change in the set or estimated value of the migration elasticity can have large effects on inverted

QoL.

Since for observed migration probabilities, migration resistance γθ×τ θij is exactly identified

by the migration gravity Eq. (10) (see Appendix K.2.4 for the empirical counterpart), an

increase in γθ implies a proportionate decrease in migration costs τ θij . Lower τ θij,j 6=i relative to

τ θij,j=i = 0 imply larger between-city migration flows, with implications for the speed of spatial

adjustments. The right panel of Figure 6 illustrates the negative relationship between γ and

the years it takes until 80% of the transition to the SSE are completed. In terms of rents, which

are log-proportionate to city employment, the adjustment period shrinks from more than 65

years to 30 years. In terms of group-region wages, we observe a decrease from close to 75 years

to less than 55 years.
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Figure 6: The role of the migration elasticity (γ)

(a) Fit of Rosen-Roback with model QoL (b) Years until 80% convergence to SSE

Notes: Elasticity estimates and within-R2 are from regressions of ln RR-QoL (A) against ln DSM-QoL (A), controlling
for group fixed effects. An increase in γ implies a decrease in migration cost τθi,j 6=i since the migration resistance γ × τθi,j
is exactly identified by the gravity migration equation. Convergence to the SSE is measured in terms of a reduction in the
sum of the absolute difference between TSE and SSE values. In all iterations, the model is quantified using 2017 values
observed in the data.

F Policy evaluation

In this section, we outline how to use the quantified model for the evaluation of policies that

seek to improve regional QoL. The first step is to establish a causal relationship between the

structural fundamental Aθi,t and some QoL determinant that is amenable to policy-induced

change. This challenge is shared with a reduced-form literature exploring capitalisation effects

of QoL determinants in house prices or inverse real wages. The second step is novel to the QoL

literature. Starting from the SSE, we use the causal estimate from the first step to update

Aθi,t, and then re-solve for a counterfactual SSE. A comparison between the initial and the

counterfactual SSE delivers general equilibrium comparative statics that account for aggregate

effects as well as inter-group and inter-region distributional effects. Unlike in the canonical CSE

that is anchored by a spatially invariant reservation utility, spatial policies can have positive

or negative effects on expected regional utility.

Our case in point is an improvement in air quality. Air pollution causes 400 thousand

premature deaths per year in the EU and is by far the number one environmental factor

driving disease (European Environment Agency, 2020). Negative effects of dirty air on health

(Deryugina et al., 2019), property prices (Chay and Greenstone, 2005; Bayer et al., 2009)

and self-reported life satisfaction (Luechinger, 2009; Levinson, 2012) are well established. Our

policy counterfactual is a reduction in PM10 concentration in the most polluted regions to the

75th percentile in the distribution across all regions. Since this application is intended to serve

as an illustrative example, we keep the estimation strategy and the policy experiment simple

and transparent. For future applications, researchers are, of course, invited to expand on our
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application, e.g. by exploiting natural experiments or randomised policies for identification,

or considering more sophisticated policy interventions in the counterfactuals. Naturally, the

procedure outlined below can be applied to any other QoL determinant or, more generally, any

determinant that affects any of the structural fundamentals {ψθi,t, ηi,t, Aθi,t} in the model.

F.1 Procedure

Transition to counterfactual SSE. Adopting the conventional exact hat algebra notation

where hats represent ratios of counterfactual values over initial values (Dekle et al., 2007),6

we model a policy as an exogenously induced relative change in QoL Âθi,t = Âθi,t(b
θX̂i,t) that

results in a counterfactual QoL Aθ
C

i,t = Âθi,tA
θ
i,t. X̂i,t is a relative change in an exogenous QoL

determinant and bθ is a group-specific parameter that describes a causal relationship between

Aθi,t and Xi,t.
Starting from the initial SSE, we use a simplified version of the dynamic solver introduced in

Section D.3 that takes Aθi,t
C as given to solve for a counterfactual SSE. As with the initial SSE,

the counterfactual SSE is referenced by stationary employment Lθi,t
C that maps to the other

endogenous variables as discussed in Section C.4. The transition into the counterfactual SSE is

moderated by a sequence of migration flows that restore the SSE through the model-endogenous

agglomeration and dispersion forces. The comparison of the initial and the counterfactual SSE

delivers a policy effect that is causal in the sense that it is not confounded by the mean-

reversion tendency of a spatial economy in the TSE. Hence, our approach yields results that

are comparable to the comparative statics employed for economic policy evaluation in static

models.

Welfare. Consider a social planner that extrapolates the expected indirect utility of stayers

in the SSE into the infinite future to create a group-region welfare measure:

Rθi,t =
V θ
i|i,t

ρ
=

(1− ι)
ρ

wθi,t

p1−α
i,t

Aθi,t exp
[
lnBθ

ii,t − τ θii
]

=
(1− ι)
ρ

wθi,t

p1−α
i,t

Aθi,t (16)

Since unlike in the canonical CSE framework utility is not equalised across regions in our

DSM, it is particularly important to specify the social welfare function when aggregating group-

region-specific welfare. We define a social welfare function in the tradition of Atkinson (1970)

as

Wt(ε) =
1

1− ε
∑
i

∑
θ

(
Rθi,t

)1−ε Lθi,t
L̄t

= Rt (1− It(ε)) , (17)

where Rt is the weighted average of group-region utility and It ∈ [0, 1] represents the Atkinson

measure of inequality (see Appendix M.1 for derivation details). This formulation separates

social welfare into a scale-dependent part (average utility) that enters positively into social

6See Heblich et al. (2020b) for a recent application.
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welfare and a scale-independent inequality measure that imposes a penalty on inequality. The

strength of the penalty is governed by the inequality aversion parameter 0 ≤ ε 6= 1. If ε = 0,

1−I = 1, such that social welfare is solely determined by the aggregate (utilitarian case). The

inequality penalty increases in ε, with ε→∞ representing the limiting Rawlsian case in which

the penalty is entirely determined by the weakest region-group.

Based on W for the baseline (∗) and the counterfactual (c) SSE, we obtain the change in

social welfare from the initial to the counterfactual SSE for a given level of inequality aversion

as

Ŵt(ε) =
Rct
R∗t

1− It(ε)c

1− It(ε)∗
. (18)

With this formulation, we acknowledge the efficiency-equity trade-off that is inherent to many

spatial shocks and policies. If there is a positive effect on aggregate welfare accompanied by

an increase in inequality, the effect on social welfare qualitatively and quantitatively depends

on inequality aversion.

F.2 Application

Estimation. The descriptive results reported in Table 2 point to a negative effect of par-

ticulate matter air pollution (PM10) on QoL. To obtain a causal estimate of the effect of air

pollution on group-specific QoL, we require an identification strategy that addresses the obvi-

ous concern that air pollution may be correlated with unobserved QoL determinants. As an

example, a more extensive road network may induce traffic and increase air pollution while

having a positive QoL effect due to reduced travel times. The potential for a downward bias

in the air pollution effect on QoL is significant as transport accounts for 20% of particulate

matter emissions in Germany, on average, with a greater share in urbanised regions (Umwelt-

bundesamt, 2020).

Therefore, we use an instrumental variable approach which exploits that the spatial diffusion

of air pollution is shaped by winds (Deryugina et al., 2019; Heblich et al., 2020a). To this end,

we compute black coal and brown coal exposure measures that aggregate over black or brown

coal deposits in surrounding regions, weighted by wind-adjusted distance. Intuitively, we scale

down the crow-flight distance from region j to i if winds typically blow from j to i and scale

the distance up if the opposite is true. We normalise these exposure measures by the naive

spatial aggregate of coal deposits and exclude any coal deposits in the own region. Hence, when

we use the resulting (log) coal exposure measures as instrumental variables for air pollution,

identification stems from exogenous variation introduced by wind directions, exclusively. The

rationale for using coal fields in the exposure measures is that, historically, energy-intensive

industries and coal power plants co-located with coal fields as shipping costs were high until the

mid 20th century (Fernihough and O’Rourke, 2021; Mohammed and Williamson, 2004). Unlike

for industries and power plants, we can rule out reverse causality from QoL to the locations of

coal fields. Since we exclude the own region (j = i) in the exposure measures, the instrumental

variables exclude localised disamenities, for example due to unpleasant views. For a more

detailed discussion of the construction, the relevance and the validity of the instruments as
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well as the underlying mechanisms, we refer to Appendix M.2.

In Figure 7, we display the estimated pollution effects from group-specific instrumental

variable regressions in which we also control for all covariates used in Table 2. In keeping with

intuition, the point estimates are negative for all 18 groups. On average, the effect is larger

than in Table 2, suggesting a role for unobserved confounders that are positively correlated

with QoL and negatively correlated with pollution, such as transport. There is a notable age

gap, with the QoL of younger workers being more sensitive to air pollution.

Figure 7: Quality-of-life effect of air pollution by group

Note: Elasticity estimates are from group-specific regressions of the log of DSM-QoL (Aθi,t) inverted as discussed in D.3

against the log of particular matter (PM10), controlling for the remaining covariates listed in Table 2. We use the log of the
wind-adjusted-distance-weighted aggregates of black and brown coal deposits in surrounding regions (excluding the self-
potential) as instrumental variables for pollution. These coal exposure measures are normalised by the non-wind-adjusted
spatial lags of black and and brown coal deposits, so that identification is driven by wind direction exclusively.

Regional effects. To generate an exogenous change in QoL Âθi,t, we combine the group-

specific estimates of the air pollution effect on QoL from Figure 7 with a hypothetical region-

specific policy. Specifically, we reduce the regional PM10 concentration to the 75th percentile

in the distribution of pollution levels across regions where the levels exceed that threshold.

While we choose the threshold arbitrarily with no particular policy in mind, the general design

vaguely resembles the US Clean Air Act. Panel (a) in Figure 8 illustrates the simulated policy

effect on the weighted (by group employment) average regional QoL. Three broader regions

stand out as being treated owing to relatively high air pollution levels: The west, home to

black coal fields; the north, home to various seaports; the east, home to brown coal fields. The

QoL effects are sizable, with the largest increase in average QoL of 7.7% in Bochum (in the

west).

The policy-induced positive change in regional QoL naturally creates incentives for workers

to relocate. As workers move to the treated regions, they congest the housing market, leading
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Figure 8: Counterfactual analysis: Regional effects

(a) QoL (b) Rent

(c) High-skilled share (d) Expected utility (stayers)

Note: We aggregate the model solutions for the initial and the counterfactual SSE from the region-group level to the
region level using the respective SSE employment shares as weights. We then display the ratio of the counterfactual
regional aggregates over the initial regional aggregates.
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to higher rents as illustrated in panel (b). Unsurprisingly, we find the largest increase in rent

of 6.3% in Bochum where QoL increased the most. There are small decreases in rent in the

range of -0.9% to -0.7% throughout the non-treated regions as these lose workers to the treated

regions. Accounting for relocation effects is a natural strength of quantitative models compared

to reduced-form settings, where indirect treatments represent a challenge for the identification

and interpretation of treatment effects.

Since we quantify the model for 18 age-gender-skill groups, our model-based counterfactuals

deliver rich sorting effects. Panel (c) shows how the policy leads to an increase in the high-skilled

share in the urbanised treated regions in particular. This increase is driven by a combination

of the high-skilled having a relatively large valuation of air quality (bθ) and a relatively large

migration elasticity (γθ) while facing relatively low migration costs (τ θij 6=i) and net-costs of

agglomeration (β × (1− α)− κθ).
A distinctive feature of our DSM is that there is no exogenous reservation utility that

anchors the spatial economy. Because of migration costs, spatial differences in expected group-

specific utility are not arbitraged away, not even in the SSE. Hence, while migration leads to

capitalisation of a change in QoL into rents (see panel b), capitalisation remains imperfect

so that we see persistent effects on regional utility in panel (d). Since 1 − α = 33% of the

income is spent on housing, the 6.3% increase in rent in Bochum, for instance, implies a

6.3% × 0.33% = 2.1% decline in utility, ceteris paribus, compared to the 7.7% QoL-induced

utility gain. In other words, only about one fourth of policy-induced QoL increase capitalises

into rents. The remaining fraction boosts utility persistently. Note that the net-effect on

expected indirect utility of 7.1% in Bochum does not amount exactly to the difference between

the equivalent utility effects of the QoL and rent increases due to agglomeration-induced wage

effects and sorting (see panel c).

Temporal effects. While there are sizable utility gains in the positively treated regions in

the SSE, utility increases even more during the transition period. In Figure 9, we plot the

evolution of wages, rents, and indirect utility during the first 100 years of the SSE-to-SSE

transition. We show group-specific wage and indirect utility effects for middle-aged, middle-

skilled men and women separately. In Bochum, the selected group of female workers receives

an 8.5% increase in QoL which maps one-to-one to an indirect utility effect in the initial period.

The respective male group receives a smaller gain due to a lower valuation of clean air. Over

the subsequent years, the heightened QoL attracts workers from other regions, increasing rent

(due to inelastically supplied land) and wage (due to agglomeration economies) levels. Since

the effect of the former dominates that of the latter, indirect utility decreases over time, and

so does the incentive for workers from other regions to relocate to Bochum. Since women

enjoy greater returns to agglomeration, spatial arbitrage neutralises a smaller fraction of their

utility gain, which adds to the long-run benefits they experience relative to men. Munich is not

directly treated by our simulated policy. The city is indirectly affected by the policy, however,

as it loses workers to the positively treated regions. Rents and wages decrease and since the

effect of the former dominates the latter, indirect utility increases. Hence, there is a positive
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policy spillover effect that operates through migration and a de-congested housing market.

Net benefits to women are lower since they take a greater wage cut due to larger returns to

agglomeration.

Figure 9: Counterfactual analysis: Temporal effects

(a) Treated: Bochum (positive QoL effect) (b) Not treated: Munich (displacement effect)

Note: Model-based numerical simulation of the SSE-to-SSE transition. Pre-policy values in all variables normalized to
one. Policy is a region-group-specific increase in QoL due to a hypothetical reduction in air pollution in the most polluted
regions. f: female, m: male, m-skill: middle-skilled (apprenticeship), m-age: middle-aged (31-50).

Aggregate effects. We aggregate the SSE-to-SSE region-group effects delivered by the

model simulations to relative changes in aggregate outcomes in Table 3. In doing so, we dis-

tinguish between treated regions where the policy bites and the remaining non-treated regions

which are only indirectly affected through displacement. Although our estimated migration

elasticity parameters (γθ) are relatively small, we observe a sizable worker flow, increasing

employment in the treated regions by almost 10% in total. GDP increases more than pro-

portionately compared to employment in the treated area since agglomeration economies and

sorting raise wages. Rents naturally increase in the treated area due to more congested housing

markets. Since the non-treated area accounts for about twice as many workers (20M) as the

treated area (10M) in the initial SSE, the relative decline in employment in the non-treated

area is about half as large (-4.5%). The displacement effect naturally leads to adjustments in

wages, rents and group composition in the opposite direction of those in the treated area.

The employment-weighted group-region utility increases by 2.2% across all regions. This

increase is driven primarily by the treated area where the group-weighted average utility in-

creases by slightly more than 3.5%. There is a small positive effect within the non-treated area

owing to lower real living cost. The spatially differentiated utility effect once more highlights

that, unlike in the canonical CSE framework, spatial policies can help targeted regions if there

are mobility frictions. The effect on social welfareW is about 13% lower if we aggregate group-

region utility Rθi using an inequality parameter ε = 0.5, which is towards the lower end of the

34



Table 3: Counterfactual analysis: Aggregate effects

Outcome All regions Treated area Non-treated area

Population 1.0000 1.0949 0.9536
GDP 0.9991 1.0996 0.9515
Average wage 0.9991 1.0043 0.9978
Average rent 1.0021 1.0175 0.9911
High-skilled share 1.0000 1.0109 0.9946
Skilled share 1.0000 1.0118 0.9976
Average utility 1.0219 1.0350 1.0003
Social welfare (inequality adjusted) 1.0191 . .
Monetised average utility (bn. e) 23.1 . .
Monetised social welfare (bn. e) 20.2 . .

Notes: Results from model-based numerical simulations. Treated regions are those where a hypo-
thetical policy improves QoL via lower air pollution. Non-treated regions are affected indirectly
through displacement. All outcomes except for the last two are given in ratios of counterfactual
(SSE) values over initial (SSE) initial values. Social welfare deflates average utility in group-
region inequality using the Atkinson (1970) measure (ε = 0.5). Monetised average utility and
social welfare are yearly flow measures obtained by multiplying the utility and welfare ratios by
initial GDP.

range considered by Atkinson (1970). If we use ε = 2 (towards the higher end of the considered

range), the discount increases to 35%. Since we obtain virtually the same inequality-adjusted

social welfare effect if we discount on inter-regional inequality, exclusively, we can conclude

that the cost of the policy comes in the form of increased spatial inequality.

A simple way to monetise the welfare effect is to multiply the relative change in welfare by

the total wage bill in the initial SSE. If we abstract from inequality aversion, a proportionate

increase in yearly region-group wages that totals e23.1 bn would achieve the same utility effect

as the policy. If we adjust for the policy effect on inequality using ε = 0.5, a fully equitable

increase in the total wage bill of e20.2 bn would suffice. With ε = 2, the monetised welfare

effect drops to e15.0 bn. In this application of the model, we abstract from the cost of the

measures used to achieve the pollution reduction. Yet, it is clear from the example that once

we move beyond the canonical CSE framework, the result of a cost-benefit test of a spatial

policy will critically depend on the social welfare function.

F.3 Other applications

The Covid-19 pandemic has spurred a debate about the future of big cities (Nathan and

Overman, 2020). A typical argument brought forth is that the pandemic erodes the main

comparative advantage of big cities: economic and social benefits of proximity. We apply the

procedure developed in this section to quantitatively evaluate three apocalyptic scenarios: a)

a reduction in productivity due to an elimination of all agglomeration benefits arising from

density; b) a reduction in QoL due to a loss of amenities that relate to social interaction (cap-

tured by our big data amenity); c) the combination of a) and b). The headline findings for

the scenarios a)/b)/c) are as follows: Large labour markets (>250k employed workers) lose
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8.2%/36.7%/37.9% percent of their workforce to small labour markets; aggregate GDP de-

creases by 10.5%/1%/10.9%; rents fall by 3.1%/9.3%/11.1% in large labour markets whereas

they increase (decrease) by (0.4)%/6.7%/5.1% in small labour markets; despite a larger reduc-

tion in the urban wage premium, the high-skilled are more likely to remain in large cities due

to their amenity preference. While these simulated effects on big cities are large, they are not

nearly as devastating as predicted by a frictionless CSE model. We refer the interested reader

to Appendix M.3 for details.

G Conclusion

We develop the first DSM with heterogeneous forward-looking agents in which all unobserved

structural fundamentals can be quantified without assuming that the economy is in a stationary

spatial equilibrium. We exploit this novel feature of our model to make several contributions

that are of academic and policy interest alike.

A key insight from our analysis is that differentials in QoL across regions are much larger

once we quantitatively account for idiosyncratic taste heterogeneity. While the existence of an

urban wage premium that reflects productivity advantages of cities is by now uncontroversial,

the evidence for an urban QoL premium is weak at best. Our results show that accounting for

idiosyncratic tastes that reduce mobility, the consumption value of cities is key to rationalising

why more than 50% of the world’s population lives in cities. CSE models have been the

workhorse tool for the evaluation of non-marketed goods such as clean air, education, safety,

or transport, just to name a few. Our results show that consensus estimates of the value of

such local public goods are likely lower bounds, implying a stronger case for policies that seek

to improve QoL.

The existence of localised place-based policies such as Enterprise Zones or broader regional

redistribution schemes such as the EU Cohesion Fund suggests that spatial equity matters

to policy makers and voters. There is an obvious tension between such spatial policies and

the workhorse spatial equilibrium models which rule out spatial effects of spatial policies by

assumption. We provide a quantitative framework for the evaluation of the aggregate and

distributional welfare consequences of place-based policies that allows for spatial incidence and

relocation effects. This framework closes the gap between QSMs that assume perfect spatial

arbitrage and the reality of spatial policy-making where trading efficiency against equity is the

order of the day. We show that even a moderate spatial inequality aversion can have a sizable

impact on the social welfare effect of a spatially targeted policy. As the literature on spatial

policy evaluation moves beyond the canonical framework in the tradition of Rosen-Roback, the

spatial aggregation of welfare effects will require an explicitly defined social welfare function.
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Artuç, Erhan, Shubham Chaudhuri, and John McLaren, “Trade Shocks and Labor Adjustment:

A Structural Empirical Approach,” American Economic Review, 2010, 100 (3), 1008–1045.

Atkinson, Anthony B., “On the measurement of inequality,” Journal of Economic Theory, 1970, 2

(3), 244–263.

Bailey, Michael, Rachel Cao, Theresa Kuchler, Johannes Stroebel, and Arlene Wong,

“Social Connectedness: Measurement, Determinants, and Effects,” Journal of Economic Perspectives,

2018, 32 (3), 259–280.

Balboni, Clare, “In Harm’s Way? Infrastructure Investments and the Persistence of Coastal Cities,”

2019, Working paper.

Baum-Snow, Nathaniel and Ronni Pavan, “Inequality and City Size,” The Review of Economics

and Statistics, 2013, 95 (5), 1535–1548.

Bayer, Patrick, Nathaniel Keohane, and Christopher Timmins, “Migration and hedonic valu-

ation: The case of air quality,” Journal of Environmental Economics and Management, 2009, 58 (1),

1–14.

Blomquist, Glenn C., Mark C. Berger, and John P. Hoehn, “New Estimates of Quality of Life

in Urban Areas,” The American Economic Review, 1988, 78 (1), 89–107.

Blouri, Yashar and Maximilian V. Ehrlich, “On the optimal design of place-based policies: A struc-

tural evaluation of EU regional transfers,” Journal of International Economics, 2020, 125, 103319.

Boelmann, Barbara and Sandra Schaffner, “Real-Estate Data for Germany (RWI-GEO-RED v1) -

Advertisements on the Internet Platform ImmobilienScout24 2007-03/2019,” Technical Report, RWI

Leibniz-Institut für Wirtschaftsforschung 2019.

Brakman, Steven, Harry Garretsen, and Marc Schramm, “The strategic bombing of German

cities during World War II and its impact on city growth,” Journal of Economic Geography, 2004, 4

(2), 201–218.

37



Bryan, Gharad and Melanie Morten, “The Aggregate Productivity Effects of Internal Migration:

Evidence from Indonesia,” Journal of Political Economy, 2019, 127 (5), 2229–2268.

Caliendo, Lorenzo, Luca David Opromolla, Fernando Parro, and Alessandro Sforza, “Goods

and Factor Market Integration: A Quantitative Assessment of the EU Enlargement,” NBER Working

paper, 2019, 23695.

, Maximiliano Dvorkin, and Fernando Parro, “Trade and Labor Market Dynamics: General

Equilibrium Analysis of the China Trade Shock,” Econometrica, 2019, 87 (3), 741–835.

Carlino, Gerald A. and Albert Saiz, “Beautiful city: Leisure amenities and urban growth,” Journal

of Regional Science, 2019, 59 (3), 369–408.

Cellini, Stephanie Riegg, Fernando Ferreira, and Jesse Rothstein, “The Value of School Facility

Investments: Evidence from a Dynamic Regression Discontinuity Design,” The Quarterly Journal of

Economics, 2010, 125 (1), 215–261.

Chay, Kenneth Y. and Michael Greenstone, “Does Air Quality Matter? Evidence from the

Housing Market,” Journal of Political Economy, 2005, 113 (2), 376–424.

Ciccone, Antonio and Robert E. Hall, “Productivity and the Density of Economic Activity,” The

American Economic Review, 1996, 86 (1), 54–70.

Combes, Pierre-Philippe and Laurent Gobillon, “The Empirics of Agglomeration Economies,”

in Gilles Duranton, J. Vernon Henderson, and William C. Strange, eds., Handbook of Regional and

Urban Economics, Vol. 5, Elsevier, 2015, chapter 5, pp. 247–348.

, Gilles Duranton, and Laurent Gobillon, “Spatial wage disparities: Sorting matters!,” Journal

of Urban Economics, 2008, 63 (2), 723–742.

, , and , “The Costs of Agglomeration: House and Land Prices in French Cities,” The Review

of Economic Studies, 2019, 86 (4), 1556–1589.
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APPENDIX FOR ONLINE PUBLICATION

This section presents an online appendix containing complementary material not intended for

publication. It does not replace the reading of the main paper.

H Stylised facts

Complementing Figure 1 in the main paper, Figure A1 visualises causes and consequences of

migration in three illustrative maps. Panel (a) plots the spatial distribution of nominal wages.

In keeping with intuition, wages tend to be higher in agglomerated areas such as Rhine-Ruhr,

Rhine-Main or the metropolitan areas of Hamburg, Munich or Stuttgart. Panel (b) shows

the spatial distribution of net-migration over the 2007 to 2017 period. High-wage areas tend

to experience positive net-migration, suggesting that workers respond to economic incentives

when making migration decisions. Panel (c) shows a strong correlation between net-migration

and changes in rents, in line with housing markets representing a congestion force.
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Figure A1: Wages, migration and rents

(a) Wages 2007 (b) Change in employment 2007-2017

(c) Change in rent 2007-2017

Note: Data from the IAB and Immobilienscout24 accessed via FDZ Ruhr.
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I Literature appendix

Table A1 summarizes the recent literature on DSM and QSM that explicitly model migration.

The distinctive feature of our model is the invertability of all structural fundamentals under

perfect foresight from a TSE.

Table A1: Dynamic and quantitative spatial models

Authors Model type Expectations Inversion Counterfactual

Ahlfeldt et al. (2020) WP DSM, GE, MC PF P,H,A,bMC TSE SSE to SSE
Balboni (2019), R&R AER DSM, GE, MC PF P,MA TSE TSE to ED
Bryan and Morten (2019), JPE QSM, MC Static - - -
Caliendo et al. (2019b), Ecta DSM, GE, MC PF - - TSE to ED
Caliendo et al. (2019a), R&R JPE DSM, GE, MC PF - - TSE to ED
Conte et al. (2020), WP DSM, GE, MC Static P,A,uMC TSE TSE to SSE
Desmet et al. (2018), JPE DSM, GE, MC Static P,A,uMC TSE TSE to SSE
Fan (2019), AEJ: Macro QSM, GE, MC Static bMC, TC SSE SSE to SSE
Monras (2020), JPE DSM, GE PF P,H,A,MR SSE TSE to SSE
Tombe and Zhu (2019), AER QSM, MC Static - - -

Abbreviations:
Model type: QSM = Quantitative spatial model; DSM = Dynamic spatial model; GE = General equilibrium; MC =
Migration cost
Expectations: PF = Perfect foresight
Inversion: P = Exogenous productivity; H = Exogenous housing supply; A = Exogenous amenity; uMC = Unilateral
migration costs; bMC = Bilateral migration costs; MR: Migration rate; MA = Market access; TC: Trade costs;
SSE = Stationary spatial equilibrium; TSE = Transitory spatial equilibrium;
Counterfactual : ED = Given end date

J Theory appendix

This section complements Section C in the main paper which develops our model.

J.1 Housing market

In this appendix, we derive the housing market equilibrium condition Eq. (8). Developers

produce housing according to the Cobb-Douglas housing production function in Eq. (7) and

seek to maximise profits:

πhi,t = pi,tηi,t

(
T̄i
β

)β (
Ki,t

1− β

)1−β
− rTi,tT̄i −Ki,t, (19)

where we have normalised the internationally competitive interest rate for capital to unity and

rTi,t is the local rental rate for developable land. From the first-order conditions, we obtain:

rTi,t =
β

1− β
Ki,t

T̄i
. (20)

Using Eq. (20) in Eq. (19) and assuming zero-profit delivers

pi,t =
(rTi,t)

β

ηi,t
. (21)
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Using Eqs. (21) and (20) in Eq. (19), we can express housing supply as

HS
i,t = η

1
β

i,t

(
T̄i
β

)
p

1−β
β

i,t , (22)

where 1−β
β is the housing supply elasticity. From Eq. (2), housing demand in region i is given

by

HD
i,t = (1− α)(1− ι)

∑
θ

Lθi,tϕ
θ
i,t = (1− α)(1− ι)Xi,t. (23)

Housing market clearing implies that HD
i,t = HS

i,t, which leads to Eq. (8). Alternatively,

we can express the regional housing rent as a function of structural parameters, structural

fundamentals, and employment density:

pi,t =

(1− α)(1− ι)β

η
1
β

i,t

β [∑
θ

Lθi,t
T̄i

(
Li,t
T̄i

)κθ
ψθi,t

]β
. (24)

The first term in the sum captures the direct effect of employment density on the supply of

housing: inelastically supplied land generates a congestion force in the form of higher rents

when immigration into i raises employment. The second term in the sum captures the indirect

effect of employment density: Density increases productivity and in turn wages via agglomer-

ation economies, which further increases housing demand. While our model can provide the

microfoundations for a regression of the log of housing rents against the log of employment

density as in Combes et al. (2019), the estimated elasticity of that regression would not directly

correspond to β in our model. Using employment (or population) density instead of output

density as a regressor (see Eq. (31) below), we would underestimate the land share, the housing

supply elasticity, and the congestion force generated by the housing market.

J.2 Net present value of utility

This section complements Section C.3 in which we introduce the migration net present value.

Strictly monotonic transformations of utility functions still represent the same underlying

preferences. We follow the conventions in the DSM literature (see e.g. Caliendo et al., 2019b)

and employ a logarithmic formulation of the net present value of utility, which allows to derive

simple closed-form solutions for expected utility in Appendix J.3.

This net present value of a worker of type θ currently living in region i, and who lived in

region k at time period t − 1 depends on current period utility and the maximal discounted

future utility, which in turn is a function of bilateral utility between all other (potentially)

different regions j,m, ..., n, h in all future periods t+ 1, t+ 2, ..., (t+ T ) + (t+ 1 + T ). Workers

expect to stay at their final destination h ∈ J from time period (t+ 1) + T onward, such that

the net present value of utility is given as

44



lnNPV θ
i|k,t(ω) = ln

[
(1− ι)wθi,t
p1−α
i,t

Aθi,t exp
(
aθki,t(ω)− τ θki

)]

+ max
{j,m,...,n,h}Jj,m,...,n,h=1

{ 1

1 + ρ
ln

(
(1− ι)wθj,t+1

p1−α
j,t+1

Aθj,t+1 exp
(
aθij,t+1(ω)− τ θij

))

+

(
1

1 + ρ

)2

E

[
ln

(
(1− ι)wθm,t+2

p1−α
m,t+2

Aθm,t+2 exp
(
aθjm,t+2(ω)− τ θjm

))]
+ . . .

+

(
1

1 + ρ

)T+1
[
E

[
ln

(
(1− ι)wθh,(t+1)+T

p1−α
h,(t+1)+T

Aθh,(t+1)+T exp
(
aθnh,(t+1)+T (ω)− τ θnh

))]

+
∞∑

s=(t+2)+T

(
1

1 + ρ

)s−(t+1+T )

E

[
ln

(
(1− ι)wθh,s
p1−α
h,s

Aθh,s exp
(
aθhh,s(ω)

))]]}
,

where 1
1+ρ ∈ (0, 1) is the time discount factor. Combining with the definitions of utility (1)

and demand functions (2) these results lead to the net present value of utility in Eq. (9).

J.3 Expected utilities and migration probabilities

This section complements Section C.3 in which we introduce the migration gravity Eq. (10).

J.3.1 Expected utility

We are interested in the expected net present value of workers of type θ when migrating from

region i to j at the end of time period t. Taking the expectation over idiosyncratic Gumbel-

distributed amenity shocks involves solving both the unconditional expectation over current

shock realisations as well as the expectation of future shocks, conditional on some region n ∈ J
offering the highest expected utility in future time periods to these workers.

J.3.2 Unconditional expectation of current period utility

Random amenity shocks are distributed according to a Gumbel distribution with the following

cumulative distribution and density function:

F θij,t(a) = exp
(
−B̃θ

ij,t exp {−
[
γθa+ Γ

]
}
)

fθij,t(a) = γθB̃θ
ij,t exp

(
−γθa− Γ− B̃θ

ij,t exp {−
[
γθa+ Γ

]
}
)

We first solve for the unconditional expectation over current the component of log-transformed

net present value of utility :
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E
[
vθi|k,t(ω)

]
≡ E

ln

(1− ι)wθi,tAθi,t exp
(
aθki,t(ω)− τ θki

)
p1−α
i,t


= E

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
+ aθki,t(ω)− τ θki

]
=

∫ ∞
−∞

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
+ aθki,t(ω)− τ θki

]
∗ f
(
aθki,t(ω)

)
daθki,t(ω)

=

∫ ∞
−∞

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
+ aθki,t(ω)− τ θki

]
∗ γθB̃θ

ki,t exp
(
−γθaθki,t(ω)− Γ− B̃θ

ki,t exp {−
[
γθaθki,t(ω) + Γ

]
}
)
daθki,t(ω),

where we substituted the density function for bilateral amenity shocks from above. We then

re-define the following variables:

xt ≡ γθaθki,t(ω) + Γ

λt ≡ ln B̃θ
ki,t

yt = xt − λt

Substituting into the integral above yields:

E
[
vθi|k,t(ω)

]
=

∫ ∞
−∞

γθB̃θ
ki,t

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
(xt − Γ)

]
∗ exp (−xt) exp (− exp (λt) exp (−xt))

1

γθ
dxt

E
[
vθi|k,t(ω)

]
=

∫ ∞
−∞

B̃θ
ki,t

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
(xt − Γ)

]
∗ exp (−xt − exp (− [xt − λt]))dxt

Then note that the derivative of exp (− exp (−yt)) is exp (−yt − exp (−yt)) and∫
yt exp (−yt − exp (−yt)) = Γ. This allows to evaluate the integral at its boundaries:

E
[
vθi|k,t(ω)

]
=

∫ ∞
−∞

[
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
(yt + λt − Γ)

]
∗ exp (−yt − exp (−yt))dyt

=

(
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
(λt − Γ)

)
∗
∫ ∞
−∞

exp (−yt − exp (−yt))dyt +
1

γθ

∫ ∞
−∞

yt exp (−yt − exp (−yt))dyt
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Furthermore note that [exp (− exp (−yt))]∞−∞ = 1. This yields

E
[
vθi|k,t(ω)

]
=

(
ln
(

(1− ι)wθi,t
)

+ lnAθi,t − ln
(
p1−α
i,t

)
− τ θki +

1

γθ
λt

)
= ln

(
exp

(
−τ θki

)
(1− ι)wθi,tAθi,tBθ

ki,t

p1−α
i,t

)
.

In line with the definition of per-period utility in Eq. (1) we subsequently define the average

per-period welfare for workers of type θ as

V θ
i|k,t = expE

[
vθi|k,t(ω)

]
=

exp
(
−τ θki

)
(1− ι)wθi,tAθi,tBθ

ki,t

p1−α
i,t

.

J.3.3 Migration option values

Assume that all workers expect to stay infinite time periods at their final destination h ∈ J
after (S+1) moves between regions, and incorporate expectations about future amenity shocks

up to time period (t+1)+T for all bilateral region pairs already when deciding on destinations

at the end of time period t+ 1.

We solve this dynamic problem by backwards induction, that is we first solve for the

conditional expectation over idiosyncratic bilateral amenity shocks, given that region h ∈ J

offers the highest life-time utility compared to all other regions l 6= h from time period time

period (t+ 1) + T onward. Let

lnVθh,(t+1)+T ≡

[
lnAθ

h,(t+1)+T

ρ +
E(aθ

hh,(t+2)+T
(ω))

ρ(1+ρ) +
∑∞

s=(t+1)+T

(
1

1+ρ

)s−((t+1)+T )
ln

(
(1−ι)wθh,s
p1−αh,s

)]
be the discounted infinite sum over future utilities at time period (t+1)+T , then it holds that

E
[
vθn,(t+1)+T (ω)

]
(1 + ρ)T ≡ E

[
max
h∈J

(
1

1 + ρ

)[
aθnh,(t+1)+T (ω)− τ θnh + lnVθh,(t+1)+T

]]
=
∑
h∈J

∫ ∞
−∞

((
1

1 + ρ

)[
aθnh,(t+1)+T (ω)− τ θnh + lnVθh,(t+1)+T

])
∗ f
(
aθnh,(t+1)+T (ω)

)
∗
∏
h6=l

F

[
τ θnl − τ θnh + ln

Vθh,(t+1)+T

Vθl,(t+1)+T

+ aθnh,(t+1)+T (ω)

]
daθnh,(t+1)+T (ω)

=
∑
h∈J

∫ ∞
−∞

((
1

1 + ρ

)[
aθnh,(t+1)+T (ω)− τ θnh + lnVθh,(t+1)+T

])
∗ f
(
aθnh,(t+1)+T (ω)

)∏
l 6=h

F
[
Ωθ
nhl + aθnh,(t+1)+T (ω)

]
daθnh,(t+1)+T (ω),

where we define the compound parameter Ωθ
nhl ≡ τ θnl − τ θnh + ln

Vθ
h,(t+1)+T

Vθ
l,(t+1)+T

. In a next step, we
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substitute the cumulative distribution and density function for idiosyncratic amenity shocks

from above:

E
[
vθn,(t+1)+T (ω)

]
(1 + ρ)T =

∑
h∈J

∫ ∞
−∞

(
1

1 + ρ

[
aθnh,(t+1)+T (ω)− τ θnh + lnVθh,(t+1)+T

])
γθB̃θ

nh,(t+1)+T

∗ exp

(
−
∑
l∈J

B̃θ
nl,(t+1)+T exp {−γθΩθ

nhl − γθaθnh,(t+1)+T − Γ}

)
∗ exp

(
−γθaθnh,(t+1)+T (ω)− Γ

)
daθnh,(t+1)+T (ω)

Similar to the proofs above we re-define variables:

x(t+1)+T ≡ γθaθnh,(t+1)+T (ω) + Γ

λ(t+1)+T ≡ ln
∑
l∈J

B̃θ
nl,(t+1)+T exp

(
−γθΩθ

nhl

)
y(t+1)+T = x(t+1)+T − λ(t+1)+T

If we substitute for the re-defined variables we get:

E
[
vθn,(t+1)+T (ω)

]
(1 + ρ)T =

∑
h∈J

∫ ∞
−∞

(
−

τ θnh
1 + ρ

+
lnVθh,(t+1)+T

1 + ρ
+

1

(1 + ρ) γθ
(
x(t+1)+T − Γ

))
∗ B̃θ

nh,(t+1)+T exp
(
−x(t+1)+T

)
∗ exp

(
−
∑
l∈J

B̃θ
nl,(t+1)+T exp

(
−x(t+1)+T

)
exp

(
−γθΩθ

nhl

))
dx(t+1)+T

E
[
vθn,(t+1)+T (ω)

]
(1 + ρ)T =

∑
h∈J

∫ ∞
−∞

B̃θ
nh,(t+1)+T

(
−

τ θnh
1 + ρ

+
lnVθh,(t+1)+T

1 + ρ
+

1

(1 + ρ) γθ
(
x(t+1)+T − Γ

))
∗ exp

(
−x(t+1)+T − exp

(
−x(t+1)+T + λ(t+1)+T

))
dx(t+1)+T

=
∑
h∈J

B̃θ
nh,(t+1)+T

∫ ∞
−∞

(
−

τ θnh
1 + ρ

+
lnVθh,(t+1)+T

1 + ρ
+
y(t+1)+T + λ(t+1)+T − Γ

(1 + ρ) γθ

)
∗ exp

(
−λθ(t+1)+T

)
exp

(
−y(t+1)+T − exp

(
−y(t+1)+T

))
dy(t+1)+T

=
∑
h∈J

B̃θ
nh,(t+1)+T exp

(
−λθ(t+1)+T

)
∗
[(
−

τ θnh
1 + ρ

+
lnVθh,(t+1)+T

1 + ρ
+

(
λ(t+1)+T − Γ

)
(1 + ρ) γθ

)

∗
∫ ∞
−∞

exp
(
−y(t+1)+T − exp

(
−y(t+1)+T

))
dy(t+1)+T

+
1

(1 + ρ) γθ

∫ ∞
−∞

y(t+1)+T exp
(
−y(t+1)+T − exp

(
−y(t+1)+T

))
dy(t+1)+T

]
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Note that the derivative of exp
(
− exp

(
−y(t+1)+T

))
is exp

(
−y(t+1)+T − exp

(
−y(t+1)+T

))
and furthermore

∫
y(t+1)+T exp

(
−y(t+1)+T − exp

(
−y(t+1)+T

))
= Γ , such that, similarly to the

proofs above, we can evaluate the integrals at their boundaries:

E
[
vθn,(t+1)+T (ω)

]
(1 + ρ)T =

∑
h∈J

B̃θ
nh,(t+1)+T exp

(
−λθ(t+1)+T

)(
−

τ θnh
1 + ρ

+
lnVθh,(t+1)+T

1 + ρ
+

λ(t+1)+T

(1 + ρ) γθ

)

=
∑
h∈J

B̃θ
nh,(t+1)+T exp

{
− ln

∑
l∈J

B̃θ
nl,(t+1)+T exp

(
−γθΩθ

nhl

)}

∗

(
−

τ θnh
1 + ρ

+
lnVθh,(t+1)+T

1 + ρ
+

1

(1 + ρ) γθ
ln
∑
l∈J

B̃θ
nl,(t+1)+T exp

(
−γθΩθ

nhl

))

=
∑
h∈J

exp

{
− ln

∑
l∈J

B̃θ
nl,(t+1)+T exp

(
−γθ

(
τ θnl − τ θnh + ln

Vθh,(t+1)+T

Vθl,(t+1)+T

))}

∗ B̃θ
nh,(t+1)+T

[
−

τ θnh
1 + ρ

+
lnVθh,(t+1)+T

1 + ρ
+

1

(1 + ρ) γθ
ln
∑
l∈J

B̃θ
nl,(t+1)+T

∗ exp

(
−γθ

(
τ θnl − τ θnh + ln

Vθh,(t+1)+T

Vθl,(t+1)+T

))]
Re-arranging terms and simplifying we thus get:

E
[
vθn,(t+1)+T (ω)

]
(1 + ρ)T =

∑
h∈J

B̃θ
nh,(t+1)+T exp

{
γθ
[
lnVθh,(t+1)+T − τ

θ
nh

]
− ln

∑
l∈J

B̃θ
nl,(t+1)+T exp

(
γθ
[
lnVθh,(t+1)+T − τ

θ
nl

])}
∗ 1

(1 + ρ) γθ
ln
∑
l∈J

B̃θ
nl,(t+1)+T exp

(
γθ
[
lnVθl,(t+1)+T − τ

θ
nl

])

=

∑
h∈J B

θ
nh,(t+1)+T exp

{
γθ
[
lnVθh,(t+1)+T − τ

θ
nh

]}
∑

l∈J B
θ
nl,(t+1)+T exp

{
γθ
[
lnVθl,(t+1)+T − τ

θ
nl

]}
∗ 1

(1 + ρ) γθ
ln
∑
l∈J

B̃θ
nl,(t+1)+T exp

(
γθ
[
lnVθl,(t+1)+T − τ

θ
nl

])
=

1

(1 + ρ) γθ
ln
∑
l∈J

B̃θ
nl,(t+1)+T exp

(
lnVθl,(t+1)+T − τ

θ
nl

)γθ
=

1

1 + ρ
ln
[∑
l∈J

{
exp

(
−τ θnl

)
Bθ
nl,(t+1)+TV

θ
l,(t+1)+T

}γθ] 1

γθ

where we denote as Oθn,(t+1)+T = 1
1+ρ ln

[∑
l∈J

{
exp

(
−τ θnl

)
Bθ
nl,(t+1)+TV

θ
l,(t+1)+T

}γθ] 1

γθ the

migration option for region n ∈ J and with lnVθl,(t+1)+T as defined above.

When deciding on a migration destination at time period t + T all workers incorporate
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expectations about future amenity shocks and time paths of wages, prices and amenities in

their decisions as well as their (discounted) migration option values. The expected utility of

workers of type θ and who were living in region o one period before is then given as

E
[
vθo,t+T (ω)

]
(1 + ρ)T−1 ≡ E

[
max
n∈J

(
1

1 + ρ

)[
aθon,t+T (ω)− τ θon + lnVθn,t+T

]]
,

with lnVθn,t+T ≡ ln

[
(1−ι)wθn,t+TA

θ
n,t+T

p1−αn,t+T

]
+Oθn,(t+1)+T .

With a proof similar to the one above (and a slight change in notation) it is straightforward

to show that

E
[
vθo,t+T (ω)

]
(1 + ρ)T−1 =

1

1 + ρ
ln
[ ∑
m∈J

{
exp

(
−τ θom

)
Bθ
om,t+TVθm,t+T

}γθ] 1

γθ .

By backwards induction we thus obtain expected worker utility at time period t, as a

function of wages, prices and amenities at the destination as well as migration option values

lnUθi|k,t = E
[
vθi|k,t(ω)

]
+

1

1 + ρ

[
E
(
vθj|i,t+1(ω)

)
+Oθj,t+2

]
(25)

and Oθj,t+2 =
1

1 + ρ
ln
[ ∑
m∈J

(
exp

{
E
[
vθm|j,t+2(ω)

]
+Oθm,t+3

[
Oθl,t+4...Oθn,(t+1)+T

]})γθ ] 1

γθ .

J.3.4 Conditional migration probability

Let lnVθj,t+1 ≡ ln

[
(1−ι)wθj,t+1A

θ
j,t+1

p1−αj,t+1

]
+ Oθj,t+2 be the discounted life-time utility at destination

j starting from time period t + 1 onward. This allows to derive the share of workers χθij|i,t
who are located in region i and for whom region j offers the highest life-time utility among

alternatives n ∈ J when incorporating forward-looking expectations:

χθij|i,t = Pr

{
−τ θij + τ θin + ln

Vθj,t+1

Vθn,t+1

+ aθij,t+1(ω) ≥ aθin,t+1(ω) ∀ n ∈ J

}

=

∫ ∞
−∞

f
(
aθij,t+1(ω)

)∏
n 6=j

F
[
Ωθ
ijn,t+1 + aθij,t+1(ω)

]
daθij,t+1(ω),

where we define the compound parameter Ωθ
ijn,t+1 ≡ −τ θij + τ θin + ln

Vθj,t+1

Vθn,t+1
. Substituting the

cumulative distribution and density function we get:

χθij|i,t =

∫ ∞
−∞

γθB̃θ
ij,t+1 exp

(
−γθaθij,t+1(ω)− Γ− B̃θ

ij,t+1 exp {−
[
γθaθij,t+1(ω) + Γ

]
}
)
∗∏

n 6=j
exp

(
−B̃θ

in,t+1 exp {−γθΩθ
ijn,t+1 − γθaθij,t+1(ω)− Γ}

)
daθij,t+1(ω)
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χθij|i,t =

∫ ∞
−∞

γθB̃θ
ij,t+1 exp

(
−γθaθij,t+1(ω)− Γ

)
∗

exp

(
−
∑
n∈J

B̃θ
in,t+1 exp

[
−γθΩθ

ijn,t+1 − γθaθij,t+1(ω)− Γ
])
daθij,t+1(ω)

To solve this integral we re-define variables. In particular, we define the following variables:

xt+1 ≡ γθaθij,t+1(ω) + Γ

λt+1 ≡ ln
∑
n∈J

B̃θ
in,t+1 exp

(
−γθΩθ

ijn,t+1

)
yt+1 = xt+1 − λt+1

Substituting in the re-defined variables delivers

χθij|i,t =

∫ ∞
−∞

γθB̃θ
ij,t+1 exp (−xt+1) exp {− exp (λt+1) exp (−xt+1)} 1

γθ
dxt+1

=

∫ ∞
−∞

B̃θ
ij,t+1 exp (−yt+1 − λt+1) exp {− exp (λt+1) exp (−yt+1 − λt+1)}dyt+1

= B̃θ
ij,t+1 exp (−λt+1)

∫ ∞
−∞

exp (−yt+1 − exp (−yt+1))dyt+1

Then note that the derivative of exp (− exp (−yt+1)) is exp (−yt+1 − exp (−yt+1)), such that

we can evaluate the integral at its boundaries:

χθij|i,t = B̃θ
ij,t+1 exp (−λt+1) ∗

[
exp (− exp (−yt+1))

]∞
−∞

= B̃θ
ij,t+1 exp (−λt+1)

Re-substituting for λt+1 and Ωθ
ijn,t+1, we derive the probability of workers of type θ to

migrate from region i to region j between time periods t and t+ 1 as

χθij|i,t =
B̃θ
ij,t+1∑

n∈J B̃
θ
in,t+1 exp

(
−γθΩθ

ijn,t+1

)
=

B̃θ
ij,t+1∑

n∈J B̃
θ
in,t+1

[
exp

(
−τ θij + τ θin +

[
ln
Vθj,t+1

Vθn,t+1

])]−γθ .
The share of workers of type θ who migrate from region i to region j is increasing in utility

at j, the migration option value and bilateral amenities, but decreasing in bilateral migration

costs:

χθij|i,t =

(
mθ
ijB

θ
ij,t+1Vθj,t+1

)γθ
∑

n∈J

(
mθ
inB

θ
in,t+1Vθn,t+1

)γθ , (26)
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where Vθj,t+1 = exp

[
ln

(
(1−ι)wθj,t+1A

θ
j,t+1

p1−αj,t+1

)
+Oθj,t+2

]
and mθ

ij = exp
[
−τ θij

]
.

J.3.5 Expected utilities and sequential moves

In what follows, we derive expected worker utility and migration probabilities under differing

worker expectations. We refer to the correct anticipation of future prices as perfect foresight

and to anticipated future moves subsequent to an initial migration decision as sequential moves.

We treat regimes with with restrictive assumptions as special cases of a general case in which

workers are fully informed. Concretely, we consider the following four cases: The general

case with perfect foresight and an arbitrary number of sequential moves (S ≥ 2); the special

case with perfect foresight and exactly one sequential move (S ≥ 1); perfect foresight and

no sequential moves (S = 0); static expectations with no sequential moves. For a detailed

discussion of the assumptions underlying each of the four cases and a case-by-case comparison

of results we refer the interested reader to Section N.

General case with perfect foresight and several sequential moves (S ≥ 2). In the

general case, workers anticipate to migrate at least (S + 1) ≥ 3 times over their employment

history. When comparing life-time utility at destinations j ∈ J , workers correctly anticipate

the whole time path of wages and prices in all regions and build sophisticated expectations

about future bilateral amenity shocks. Note that the migration option value in Eq. (26)

entails two components: the value of being able to move to any high-utility region m ∈ J

following stochastic amenity shocks one period forward as well as their migration option values,

that is the migration option value Oθj,t+2 will itself be a function of the option values in

time period t + 3. Furthermore under the assumption of perfect foresight the option value

Oθm,t+3

[
Oθl,t+4 ... Oθn,(t+1)+T

]
in turn necessarily depends on the whole forward time path of

migration option values and is given as

Oθj,t+2 =
1

1 + ρ
ln
[ ∑
m∈J

(
exp

{
E
[
vθm|j,t+2(ω)

]
+Oθm,(t+3)

[
Oθl,(t+4)...O

θ
n,(t+1)+T

]})γθ ] 1

γθ .

Special case with perfect foresight and one sequential move (S=1). In this special

case we assume that workers expect to relocate from their destination j ∈ J only once. Under

this assumption the migration option value in t+ 2 will only depend on the ease at which the

discounted time path of wages, prices and amenities in all regions can be accessed from j ∈ J ,

but not on the forward time path of migration option values. The migration option value in

expected worker utility Eq. (25) and migration probabilities in Eq. (26) then simplifies to

Oθj,t+2 =
1

1 + ρ
ln
[ ∑
m∈J

(
exp

(
−τ θjm

)
Bθ
jm,t+2Vθm,t+2

)γθ ] 1

γθ

with lnVθm,t+2 ≡
lnAθm,t+2

ρ
+
E(aθmm,t+3(ω))

ρ(1 + ρ)
+

∞∑
s=t+2

(
1

1 + ρ

)s−((t+2)

ln

(
(1− ι)wθm,s

p1−α
m,s

)
.
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As discussed in detail in Section N.2, quantifying the model under the assumption of an ar-

bitrary number of sequential moves creates a dimensionality problem. Guided by the empirical

observation that almost 90% of workers switch local labour markets at most twice over their

employment history, we solve and quantify the model for this special case of one sequential

move.

Special case with perfect foresight and no sequential move (S=0). In this special

case we assume that workers do not expect to relocate from their destination j ∈ J . We can

therefore set Oθj,t+2 = 0 in Eqs. (25) and (26), such that workers only incorporate the infinite

time paths of wages, prices and amenities in j when making their migration decisions. The

formulation of expected worker utility and migration probabilities then simplifies further to

lnUθi|k,t = E
[
vθi|k,t(ω)

]
+

1

1 + ρ
ln
[
exp

(
−τ θij

)
Bθ
ij,t+1Vθj,t+1

]
,

and lnVθj,t+1 ≡
lnAθj,t+1

ρ
+
E(aθjj,t+2(ω))

ρ(1 + ρ)
+

∞∑
s=t+1

(
1

1 + ρ

)s−((t+1)

ln

(
(1− ι)wθj,s
p1−α
j,s

)
.

Special case with static expectations and no sequential move (S=0) In this last

special case we assume that workers have static expectations, that is they extrapolate the

current realization of wages and prices into the future. Under the assumption of an infinite

time horizon and constant real wages as well as amenities, this special scenario yields the

simplest formulation of expected worker utility and migration probabilities:

lnUθi|k,t = E
[
vθi|k,t(ω)

]
+

1

1 + ρ
ln
[
exp

(
−τ θij

)
Bθ
ij,t+1Vθj,t+1

]
and lnVθj,t+1 ≡

1

ρ

(
ln

(1− ι)wθj,sAθj,t+1

p1−α
j,s

+
E(aθjj,t+2(ω))

1 + ρ

)
.

J.4 Uniqueness

This appendix section complements Section C.4 in the main paper and provides a discussion

of equilibrium properties.

Our model features a direct mapping from group-region employment to local wages and

rents conditional on structural parameters according to Eqs. (6) and (8). Further, applying the

condition that adding one worker to a location raises expenditure more than income ensures

mean reversion of the model and all locations will be populated. With respect to income,

an immigrating worker exerts a positive production externality on a θ-type worker in the

destination region measured by the elasticity κθ according to Eq. (6). Individual expenditure

changes due to responses in housing rents. Combining demand and supply effects and building
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on Appendix J.1, we obtain

(1− α)
∂pi,t

∂Lθi,t
= (1− α)βpi,t

[∑
θ

Lθi,t
T̄i
ψθi,t

(
Li,t
T̄i

)κθ]−1
Lθi,t
T̄i
ψθi,t

(
Li,t
T̄i

)κθ [ 1

Lθi,t
+

κθ

Li,t

]
.

For the SSE to hold, Eq. (14) has to be satisfied for all region-group pairs. Conditional

on primitives and given the mean-reversion tendency of the model, we find in Monte Carlo

simulations that there is a unique employment vector to which the economy converges in the

long run. Figure A2 illustrates this insight.

Figure A2: Monte-Carlo simulation - SSE employment

Note: The figure summarises the outcome from 250 Monte Carlo experiments. In each experiment, we hold all primitives
constant and use random values of Lθi,t drawn from a uniform distribution under the constraint

∑
i L

θ
i,t = L̄θt to generate

a TSE from which we solve for the SSE using the dynamic solver discussed in Sections D.3 and K.3. The histogram
illustrates the variation in SSE employment across Monte Carlo experiments within J × Θ = 2, 538 region-groups. The
variation is essentially zero, implying that the solver has converged to the same employment values that reference a SSE
in all experiments.

J.5 Quality-of-life premiums

In this section, we derive the migration and housing equilibrium loci displayed in Figure 2 in

Section C.7 from the structure of our model. Intuitively, the housing equilibrium locus in the

real living cost-employment space is a collection of points that satisfy all housing-market-related

conditions that must hold in the TSE (and the SSE). Likewise, the migration equilibrium locus

satisfies all migration-related conditions that must hold in the SSE. The intersection of both

loci is the only point where all equilibrium conditions of the SSE are satisfied and, hence, we

can use it to quantify the model and derive QoL premiums.

Housing equilibrium. Inelastically supplied land implies that the cost of supplying housing

increases in the regional housing provision. Profit maximisation by developers, perfect compe-

tition, and housing market clearing give Eq. (8), which we can rearrange to represent how real
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living costs are related to housing demand and exogenous housing productivity in equilibrium

(housing markets clear in the TSE and the SSE):

ln

(
p1−α
i,t

wθi,t

)
= (1− α)β

(
ln [β (1− α) (1− ι)Xi,t]−

1

β
ln (ηi,t)− ln

(
T̄i
))
− ln

(
wθi,t

)
.

Regional output is the sum over the wage bill of all groups Xi,t =
∑

θ w
θ
i,tL

θ
i,t. Wages wθi,t

are a function of employment Lθi,t, exogenous labour productivity ψθi,t and exogenous land T̄i

as defined in Eq. (6). Therefore, there is a one-to-one mapping from employment to real living

cost under the parametrisation discussed in Section D. For the illustration in Figure 2, we use

the structural fundamentals inverted for the city of Essen and the parameters estimated for

the group of middle-aged, middle-skilled, male workers to derive the housing equilibrium locus

HH1. To obtain the housing equilibrium locus HH2, we increase housing productivity ηi,t by

70%.

Since we are already in the real living cost-employment space, it is straightforward to derive

the total differential with respect to (log) employment.

d ln
(
p1−α
i,t /wθi,t

)
=
∑
θ

[
(1− α)βwθi,tL

θ
i,t∑

θ w
θ
i,tL

θ
i,t

(
1 +

κθLθi,t∑
θ L

θ
i,t

)
−

κθLθi,t∑
θ L

θ
i,t

]
d lnLθi,t,

where d lnLθi,t denotes the change in group-specific (log) employment lnLθi,t. For the special

case of Θ = 1 (one worker group), the elasticity of real living costs with respect to employment

(the slope of the housing equilibrium locus) simplifies to

d ln
(
p1−α
i,t /wi,t

)
d lnLi,t

= (1− α)β(1 + κ)− κ.

In keeping with intuition, real living costs increase faster in city size the larger the land share

β (and hence, the smaller the housing supply elasticity) and the smaller the agglomeration

elasticity κ.

Migration equilibrium. The supply of labour Lθi,t of group θ in city i in period t is the

sum over the products of the inbound migration probabilities χθji|j,t−1 and employment Lθj,t−1

across all migration origins j (
∑

j χ
θ
ji|j,t−1L

θ
j,t−1) according to Eq. (12).

Intuitively, higher real living costs make a location less attractive as a migration destina-

tion, ceteris paribus. In the SSE, migration markets clear in the sense that the region-group

employment is stationary. As a result, the prices of labour and housing are also stationary.

To derive the migration equilibrium locus LL1 in Figure 2, we again use the structural

fundamentals inverted for the city of Essen and the parameters estimated for the group of

middle-aged, middle-skilled, male workers. We then take a numerical approach and compute

LL1 under varying living costs. To obtain LL2, we repeat the exercises, increasing the QoL

shifter Aθi,t by 60%.
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Since the SSE assumption simplifies the expected wage and rent vectors to an infinite

projection of the stationary realisations in t, we can derive an analytical solution for the slope

for the migration equilibrium locus when furthermore abstracting from the migration option

values. Starting from labour supply defined by Eq. (12), we take logs, and then differentiate

with respect to the log of real living costs
d lnLθi,t

d ln(p
(1−α)
i /wθi,t)

. The inverse of this derivative gives

the elasticity of real living cost to employment:

d ln
(
p1−α
i,t /wθi,t

)
d lnLθi,t

=
ρ

γθ

ln
(
p1−α
i,t /wθi,t

)
(

1− χθii|i,t−1

) ∑j∈J χ
θ
ji|j,t−1L

θ
j,t−1

χθii|i,t−1L
θ
i,t−1

< 0.

Hence, the migration equilibrium locus establishes a negative relationship between real liv-

ing cost and city employment, which is intuitive given that the inbound migration probabilities

χθji|,t−1 are positively related to the real wage at i via the migration gravity Eq. (10).

The elasticity of real living cost to employment is governed by the variance of idiosyn-

cratic amenities that captures worker heterogeneity. Intuitively, greater worker heterogeneity

implies a lower aggregate migration response to real living cost differentials as economic mi-

gration incentives will dominate idiosyncratic factors for fewer workers. In the limit γθ → 0,

labour supply becomes perfectly inelastic (a vertical migration equilibrium locus). If workers

are homogeneous
(
γθ →∞

)
, marginal differences in real living costs trigger large frictionless

migration adjustments, resulting in a horizontal migration equilibrium locus.
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K Quantification appendix

K.1 Data

This section complements Section D.1 in the main paper. To estimate the crucial structural

parameters and invert the structural fundamentals, we require four sets of data compiled

for consistent spatial units: Employment, wages, floor space prices, and bilateral migration.

In addition, we collect data on determinants of migration costs as well as various location

characteristics for overidentification tests and policy simulations. A detailed description of our

data is below.

K.1.1 Spatial unit

As an empirical correspondent to locations indexed by i in the model we choose the 141 German

labour market regions defined by Kosfeld and Werner (2012). The delineation of these areas

is based on combining one or more administrative regions at the county level with the aim

of creating self-contained labour markets. The boundary of local labour markets are defined

such that commuting within labour market regions is relatively large compared to commuting

between regions (subject to an upper limit on commuting time of 45-60 minutes).

K.1.2 Employment

Our measure of employment Lθi,t is constructed from the Employment History (BeH) covering

the years 1993-2018.7 This dataset is provided by the Institute of Employment Research (IAB)

and contains information on the universe of employees in Germany (with the exception of civil

servants and the self-employed) on a daily basis. We only select those workers who are employed

subject to social security contributions (including apprentices) and who are aged between 16

and 65 years.8

Based on this selection we compute the number of employees in each year and labour

market region. In addition, we compute region-year-specific employment levels for different

groups which are defined according to the interactions between sex, three skill categories (no

apprenticeship, completed apprenticeship and tertiary education) and three age categories (16-

30 years, 31-50 years and 51-65 years).9 Employment size varies considerably between labour

market regions. While the average number of employees stands at 201,000 in the year 2017,

values range from 17,000 in the labour market region Vulkaneifel to 1.4 million in Berlin.

7We use version 10.04.00-190819.
8We extract all relevant information from the employment record that contains 30 June of a given year. If

a person has multiple employment records, we select according to 1) the average daily wage, 2) the duration of
the employment record, 3) at random.

9Individuals are assigned the highest qualification level that they achieve over the course of their working
life. Consequently, while a person’s age changes over time, sex and skill are time-invariant. The educational
qualification variable has been processed based on Imputation Procedure 1 described in Fitzenberger et al.
(2006).
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K.1.3 Migration

We assign workers to labour market regions using their place of employment as reported in the

BeH. Bilateral group-specific migration flows are then constructed by computing the number

of workers belonging to group θ who used to be employed in region i in year t but who are

working in region j in year t + 1 for every pair of origin region i and destination region j.

Based on these bilateral flows we construct group-specific migration probabilities χθij,t that are

defined as the ratio of the flows from i to j over the level of employment in origin region i in

year t. Since labour market regions are designed with the aim of reflecting commuting patterns

in a region, we propose that a change in the place of employment across labour market regions

is likely to go along with a change of residence.10

There are gaps in a worker’s employment record in our data, for example if a person was in

a different form of employment that is not subject to social security contributions, unemployed

or had withdrawn from the labour market. We close such gaps by creating artificial records that

duplicate the last available employment record and, in particular, the place of employment. In

doing so, we implicitly assume that a person remains in the same labour market region until

they find a new regular job in another region, which will be recorded in our data.11

K.1.4 Productivity

We use information from the BeH on the universe of workers who are observed as employed

subject to social security (including apprentices) on June 30 during the 1993-2018 time period

to estimate the group-region-year-specific productivity which maps into the wage. In line

with the standard approach in the agglomeration literature (Combes and Gobillon, 2015), we

assume in Eq. (5) that worker productivity ϕθi,t(ω) is a multiplicative function of a group-

region-year component ϕθi,t and an individual component δθi,t(ω). Following the conventions in

labour economics (Abowd et al., 1999), we define δθi,t(ω) = exp(δ̄ωS
L
i,tz

LfL,θi,ω,t) as a function of

unobserved time-invariant individual productivity δ̄ω (we use ω as a subscript to index workers),

observable worker characteristics SLω,t (dummies for whether a worker is in an apprenticeship

or works part-time, with zL being the marginal effects) and a stochastic residual term fL,θi,ω,t.

Log-linearisation and setting individual productivity equal to the nominal wage ϕθi,t(ω) = wθi,ω,t
as predicted under perfect competition (see Section C.2) then gives the estimation equation:

lnwθi,ω,t = δ̄ω + SLi,tz
L + ϕ̃θi,t + fL,θi,ω,t. (27)

In estimating Eq. (27), we remove all observations of individuals who never change their

place of employment and estimate the model separately by gender-skill groups for computa-

10This assumption is backed up by a considerable degree of overlap between the place of employment and
the place of residence. For the year 2017, we find that approximately 75% of employees who work in a specific
labour market region also live there. Moreover, use of the place of residence would reduce the available data as
this information is only available from 1999 onward.

11Notice that this procedure is only used for the computation of migration flows. Estimation of individual-
level productivity is therefore unaffected. Approximately 19% of the employment records in the data set are
constructed in this way.
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tional efficiency. Table A2 shows the results of estimating Eq. (27) for each of the six sex-skill

groups. As expected, part-time workers and apprentices have lower expected daily wages. In

both cases the wage discount is larger for males than for females and it increases in magnitude

with the skill level. Moreover, wages are lower on average in periods when the worker has not

yet reached the highest skill level. Given the skill group, male regular full-time workers who

have reached their highest skill level have higher wages than females. Likewise, within sex

groups the expected wage of regular full-time workers at their highest skill level increases with

skill.

Table A2: Estimation of group-region-year productivity

(1) (2) (3) (4) (5) (6)
Female Female Female Male Male Male

No appren- Appren-
Tertiary

No appren- Appren-
Tertiary

ticeship ticeship ticeship ticeship

Part-time -0.331∗∗∗ -0.351∗∗∗ -0.441∗∗∗ -0.437∗∗∗ -0.455∗∗∗ -0.559∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Apprentice -0.798∗∗∗ -0.854∗∗∗ -0.953∗∗∗ -0.933∗∗∗ -1.017∗∗∗ -1.039∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Below highest skill - -0.162∗∗∗ -0.167∗∗∗ - -0.111∗∗∗ -0.149∗∗∗

(.) (0.00) (0.00) (.) (0.00) (0.00)
Constant 3.886∗∗∗ 4.143∗∗∗ 4.415∗∗∗ 4.158∗∗∗ 4.367∗∗∗ 4.689∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Worker effects Yes Yes Yes Yes Yes Yes
Group-region-year effects Yes Yes Yes Yes Yes Yes
Observations 3,690,790 71,274,252 21,087,352 5,427,142 107,566,946 36,3674,105
R2 .777 .763 .752 .805 .831 .830

Notes: Units of observation are individual-level employment records. The dependent variable is the log average
daily wage. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

We recover ˆ̃ϕθi,t as a log index of group-region-year-specific productivity which we re-scale

such that the group-averages match the group-specific log annual earnings in the raw wage data.

We remove a common national trend by running an auxiliary regression of ˆ̃ϕθi,t against region

and year effects and subtracting the latter (using 2017 as the reference category). Exponen-

tiating the regression-adjusted ˆ̃ϕθi,t, we obtain our final region-group-year-specific productivity

index ϕθi,t.

In Table A3, we test for systematic differences in lnϕθi,t across age, gender, and skill groups.

Results are shown separately for the period 2007-17, which is used in the empirical analysis (as

information on housing prices is only available for those years) as well as for the full period,

1993-2018. Ceteris paribus, female worker productivity is 27% (=(exp(-0.315)-1)*100%) lower

than male productivity, with no discernible difference between the two time periods. Workers

with an apprenticeship have a predicted productivity that is approximately 45% (=(exp(0.371)-

1)*100%) higher than among workers without an apprenticeship, while it is almost twice as

high for workers with tertiary education. Whereas the difference in productivities between

workers with and without an apprenticeship are almost identical in both time periods, it has

increased for university-educated workers. Expected productivity increases with age. It is

is 46% (=(exp(0.380)-1)*100%) higher among the age group 31-50 and 64% (=(exp(0.495)-
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1)*100%) among the age group 51-65 compared to the youngest age group. Compared to the

full time period, it appears that the age gradient has become smaller.

Table A3: Productivity differences

(1) (2)
2007-17 1993-2018

Female -0.315∗∗∗ -0.315∗∗∗

(0.00) (0.00)
31-50 years 0.380∗∗∗ 0.472∗∗∗

(0.00) (0.00)
51-65 years 0.495∗∗∗ 0.624∗∗∗

(0.00) (0.00)
Apprenticeship 0.371∗∗∗ 0.373∗∗∗

(0.00) (0.00)
Tertiary education 0.707∗∗∗ 0.667∗∗∗

(0.00) (0.00)
Constant 9.878∗∗∗ 9.817∗∗∗

(0.00) (0.00)

Region effects Yes Yes
Year effects Yes Yes
Observations 27,918 65,988
R2 .916 .898

Notes: Units of observation are group-region-year
cells. The dependent variable is a group-region-year-
specific log productivity measure that is derived as a
fixed effect from an individual-level regression of log
daily wages that also controls for individual fixed ef-
fects. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

K.1.5 Housing costs

To compute mix-adjusted indices of purchase prices for a panel of labour market area-year

observations, we use the ”Real-Estate Data for Germany (RWI-GEO-RED)” micro data dis-

cussed in detail by Boelmann and Schaffner (2019). The data originally come from the internet

platform ImmobilienScout24 and have been processed and made available for scientific research

by the FDZ (Forschungsdatenzentrum) Ruhr. It covers apartments and houses for sale from

2007 to 2017. ImmobilienScout24 is the leading online platform for real estate listings, with a

self-reported market share of about 50% (Georgi and Barkow, 2010).

In line with standard practice in urban economics, we model the cost of housing as a rental

price whereas in our data we observe purchase prices. Following conventions, we assume that

property markets are competitive and investors and owner-occupiers apply a 0.035 discount

rate to future streams of actual or imputed rents over an infinite horizon (Koster and Pinchbeck,

2021). Our empirical measure of rent then is pi,t = 0.035Pi,t, where Pi,t is a location-time-

specific house price index following Combes et al. (2019), who in turn build on a long tradition
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of urban gradient regressions going back to Clark (1951):

lnPs,i,t = lnDP
s,iui + S̃Ps,i,tz

P
i + P̃i,t + fPs,i,t, (28)

where lnPs,i,t is the log of price per square meter floor area of property s, lnDP
s,i is the

distance from the geographic centroid of the municipality with the largest employment in a

labour market area, ui are the destination-specific gradients, S̃s,t = Ss,t − S̄ is a vector of

property characteristics Ss,t net of the national average S̄, zPi is a vector of destination-specific

implicit prices, P̃i,t is a location-year fixed effect and fPs,i,t is an unobserved residual. To

remove a common national trend, we run an auxiliary regression of P̃i,t against region effects

and year effects and subtract the latter. From the adjusted location-year fixed effect we infer a

property price index Pi,t = eP̃i,t , which is mix-adjusted for property characteristics and location

and representative for a property with the national average characteristics at the centre of a

labour market area. In following Combes et al. (2019), we assume that workers are fully

mobile and indifferent between locations within monocentric regions indexed by i. Decreasing

prices at greater distances from the regional centre offset one for one increasing within-region

transport costs. At any other location within a region, quantifying QoL requires accounting

for commuting costs (Albouy and Lue, 2015).

The processed data contain a detailed geo-reference, accurate to the level of 1x1 square kilo-

meter grid cells in the European standard ETRS89-LAEA projection. This makes it straight-

forward to calculate the straight-line distance from a property to the centre of a labour market

area, defined as the geographic centroid of the municipality with the largest employment num-

ber. Moreover, the data set contains a wide range of property characteristics. However, the

degree of coverage varies significantly, with missing values accounting for the majority of ob-

servations for selected variables. We focus on control variables with reasonably wide coverage,

which include attributes that are typical in hedonic analyses such as the floor area, the number

of rooms, the type of property (house vs. flat), the type of heating system and whether features

such a balcony, a garden, or a basement belong to the property. There are a limited number of

missing values within these variables. For each variable, we set the missing values to zero and

generate an auxiliary indicator variable that identifies all observations with a missing value in

the selected variable. The mix-adjusted hedonic index we generate then gives the price of a

property with the national average in observable characteristics and the average unobserved

characteristics of properties with non-missing values in observables, which is located right at

the centre of the labour market area. We report summary statistics of observable characteristics

in Table A4. The average property has a floor area of about 140 square meters, approximately

five rooms, and a 40-percent chance of being an apartment.

K.1.6 Migration distance

We first compute the distance between every pair of municipalities in Germany using the de-

lineation that is valid on 31 December 2018. To derive the distance between any two labour

market regions, we form the population-weighted geometric mean of the corresponding munic-
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Table A4: House price index: Descriptive statistics

N Mean Stand. dev. 10th pct. 90th pct.

Price per square meter 16,591,919 2,317 225,608 714 3,258
Distance to CBD (in km) 16,591,919 17.45 13.4 2.89 35.98
Living space (in square meter) 16,591,919 141.81 130.13 59 232
Rooms 16,591,919 4.75 2.77 2 8
Type of housing 16,591,919 0.4 0.49 0 1
Balcony 16,591,919 0.28 0.45 0 1
Garden 16,591,919 0.08 0.27 0 0
Basement 16,591,919 0.35 0.48 0 1
Type of heating 16,591,919 7.1 6.14 0 13

Notes: Type of heating is a categorical variable between 1 and 13. Type of housing is a binary variable with
value one for apartments and zero for houses. Balcony, Garden and Basement are also binary variables.
Micro data from RWI-Leibniz Institute for Economic Research (Boelmann and Schaffner, 2019).

ipal distances. For a cultural distance measure, we use the inverse of the county-based dialect

similarity index by Falck et al. (2012), which we aggregate to labour markets regions.

K.1.7 Big data

Big data amenity. To generate a big-data amenity index, we use geotagged photos shared

in social media. They originally stem from Eric Fisher’s Geotaggers’ World Atlas, whose

observations are taken from Flickr and Picasa search APIs.12 We use about 1.5 million photos

taken within the boundaries of German labour market regions, most of which are from the early

2010s, roughly in the middle of our core study period (2007-2017). The idea to use geotagged

photos to capture the amenity value of locations was originally proposed by Ahlfeldt (2013),

with recent applications including Gaigné et al. (2017), Saiz et al. (2018), and Carlino and Saiz

(2019).

We follow Ahlfeldt (2013) and assume that there is a photo production function that links

the amenity value Aθi to the number of photos shared on social media:

Pθi = cθ
P
Aθi

ζθ∏
n

(X b
θ
n
P

i,n )εθi
P
, (29)

where Xi,n is a set of production factors indexed by n to be specified and Pθi = P̄i ∀ θ ∈ Θ

with P̄i being the total number of photos. As an example, regional employment Li may

be included since more residents may generate more photos at a constant photo propensity.

ζθ is the amenity elasticity of photo production, which will be positive if social media users

share visually appealing content (e.g. distinctive architecture or scenic views) or interesting

activities (e.g. hiking tours or restaurant visits) that are related to a location’s endowment

with amenities. εθ
P

is a residual term and {cθP , bθn
P } are parameters. Under the assumptions

made, we retrieve a big data amenity as Dθi = ζθ lnAi
θ + ln εθi

P
from the following regression:

12See for details http://www.flickr.com/photos/walkingsf/sets/72157623971287575/).
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lnPθi = c̃θP +
∑
n

(bθn
P

lnXi,n) +Dθi .

The interpretation of the big data amenity naturally depends on the covariates in Xi,n. We

plot an unconditional version excluding any controls in the left panel of Figure A3. Evidently,

large urban labour market regions generate more photos. However, this is not necessarily an

amenity effect since we expect more populated areas to generate more photos simply because

there are more users. In the right panel, we plot a version where we condition on employment

and geographic land area. Now, some regions close to the Baltic Sea in the North and the

Alps in the South that are popular holiday destinations are also identified as high-amenity

areas. From the large labour markets, only Berlin remains in the top category of amenity value.

However, controlling for population not only removes the effect on photo production, but also a

potential urban quality-of-life premium. Thus, this conditional version of the big data amenity

is best interpreted as capturing amenities such as a favourable geography offering scenic views,

or historic buildings, but not a vibrant cultural landscape due to restaurant variety, which are

typical for large cities.

Figure A3: Photo count and big data amenity

(a) Unconditional big data amenity (b) Conditional big data amenity

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Conditional big data
amenity is the log photo count stripped off the effect of log employment and log geographic area in an auxiliary regression.
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Social connectedness. We use the Social Connectedness Index (SCI) to measure the strength

of social ties that exist between two regions. The SCI is defined as the ratio between the num-

ber of friendship connections that exist between Facebook users of any two regions i and j over

the product of Facebook users in each of the two regions:

SCIij =
Connectionsij
Usersi × Usersj

.

The variable is then re-scaled so that it ranges from 1 to 1, 000, 000, 000. A more detailed

discussion of the SCI can be found in (Bailey et al., 2018).

Facebook provides the SCI data at the regional level for a broad range of countries (see

Bailey et al. (2020) for an application). Within Europe data are available at the third level

of the Nomenclature of Territorial Units for Statistics (NUTS). In Germany, NUTS3 regions

correspond to counties, so that the data can be aggregated to the level of the labour market

region. We first select all region pairs for which both counties are in Germany. We then proceed

to compute a weighted average of the SCI over all county pairs within a pair of labour market

regions using the sum of the populations in each county pair as a weight.

K.1.8 Location characteristics

Air pollution. We use the concentration of particulate matter to measure air pollution.

According to the German Environment Agency (Umweltbundesamt), particulates with a di-

ameter of less than 10 micrometer (PM10) exhibit a particular health risk. We access raw

data at the municipality level from the German Environment Agency for 2019. Since there is a

direct mapping from municipalities to the local labour markets defined by Kosfeld and Werner

(2012), aggregation of the data is straightforward.

Coal deposits and power plants. To compute the coal exposure measure used in the policy

application in Section F, we collect data on the spatial distribution of energy resources, espe-

cially brown and black coal, from the Federal Institute for Geosciences and Natural Resources

in Germany (www.bgr.bund.de). To explore the mechanisms underlying our identification

strategy for the estimation of pollution effects, we collect the locations of active coal power

plants from the Bundesnetzagentur (www.bundesnetzagentur.de, list of power plants from 1

April 2020).

Wind directions. We obtain wind frequencies by 36 directions for all local labour markets

from Kasperski (2002), which we use to generate a wind-adjusted coal exposure measure that

serves as an instrument for air pollution.

Fundamentals. We compute a comprehensive data set on fundamental first-nature char-

acteristics that potentially affect productivity (e.g. access to navigable rivers), amenity (e.g.

climate), and housing TFP (e.g. physical constraints to development).
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World War II destruction. We compile a new dataset based on Hohn (1991) documenting

the share of living space destroyed during World War II. The data are available for all German

cities with more than 2,000 inhabitants in 1939. Combining this information with average

destruction rates per state and population weights for each location, we construct the weighted

average share of destroyed living space per labour market region.

K.1.9 Summary statistics

Table A5 provides descriptive statistics for the central variables from the year 2017 that are

used for the quantification of our model.

K.2 Structural parameters

This section complements Section D.2 in the main paper by formally deriving estimation equa-

tions and providing full estimation results. Before we introduce the technical details and full

estimation results in the following subsections, we provide an accessible summary of the key

parameters of the model in Table A6 and summarise the variation in group-specific parameters

by means of regressions against group-dummies in Table A7 for convenience.

K.2.1 Density elasticity of productivity (κθ)

Our empirical approach to the identification of exogenous and endogenous productivity effects

is inspired by Combes et al. (2008). We use a conventional AKM-regression described in the

data section K.1.4 to separate the group-region-year specific component of productivity ϕθi,t
defined in Eq. (5) from the worker-specific component. Next, we define the exogenous group-

region-year productivity as ψθi,t = exp(aL,θg + eL,θi,t ), where aL,θg is a group-zone specific effect

and eL,θi,t is a structural residual. Zone effects capture differences in exogenous productivity

between former East Germany and West Germany, indexed by g, due to persistent effects of the

division period. Log-linearisation yields the following group-specific regression model, which

exactly identifies the group-specific density elasticity of productivity κθ and the exogenous

group-region-year productivity ψθi,t:

lnϕθi,g,t = aL,θg + κθ ln
(Li,t
T̄i

)
+ eL,θi,g,t. (30)

Unobserved fundamentals correlated with density pose a threat to identification of κθ.

Following Ciccone and Hall (1996), we use the deep lag of log population density (1907) as an

instrument for the log of contemporary density, arguing that fundamentals that gave rise to

density a century ago are of limited relevance for productivity today. Since the instrumental

variable is time-invariant, we cluster standard errors on regions.

The resulting estimates of the density elasticity of productivity are presented in Figure

A4. The employment-weighted average estimate for κ is 0.025, close to the consensus of about

0.02 in the literature (Combes and Gobillon, 2015). There is significant heterogeneity across
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Table A5: Summary statistics

N Mean Std dev

Bilateral flows and distances

Migration flow 357,858 81.12 1,929.79
Ln distance 19,740 5.62 0.60
Ln cultural distance 19,881 0.03 0.01
Ln social connectedness 19,881 -8.99 0.99

Employment variables

Ln employment 2,538 8.25 1.58
Employment share: Female (%) 141 46.38 2.95
Employment share: Apprenticeship (%) 141 75.79 5.68
Employment share: Tertiary education (%) 141 15.76 4.99
Employment share: 31-50 years (%) 141 46.15 1.64
Employment share: 51-65 years (%) 141 32.48 2.93
Employment share: Agriculture (%) 141 1.09 1.14
Employment share: Construction (%) 141 6.69 1.90
Employment share: Tradable services (%) 141 9.43 4.20
Employment share: Manufacturing (%) 141 25.60 9.06
Employment share: Energy-intensive heavy industry (%) 141 5.37 3.34
Ln employment density 141 4.07 0.79

Wages and rents

Ln wage 2,538 10.37 0.36
Ln price 141 4.22 0.57

Structural fundamentals

Ln quality of life (DSM) 2,538 0.53 0.55
Ln quality of life (Rosen-Roback) 2,538 -8.94 0.39

Regional characteristics

Ln area 141 7.69 0.56
East Germany (dummy) 141 0.23 0.42
Near Alps (dummy) 141 0.02 0.14
Near coast (dummy) 141 0.11 0.31
Ln historic population density 141 4.65 0.68
Ln crime per capita 141 -6.30 0.31
Housing stock destroyed in WWII (%) 141 9.60 9.72
Number of opera houses 141 0.80 1.08
Ln water area 141 17.39 1.00
Big data amenity index (residualised) 141 0.00 0.43

Pollution variables

Ln pollution (PM10) 141 2.62 0.12
Number of active coal plants 141 0.52 1.37
Ln meteorological black coal exposure (net of geographical exposure) 141 -0.11 0.46
Ln meteorological brown coal exposure (net of geographical exposure) 141 -0.24 0.26

Notes: Number of observations differ: 141 regions; 141 regions x 18 groups = 1,551 region-groups; 141 regions x 141
regions = 19,881 region pairs; 141 regions x 141 regions x 18 groups = 357,858 region-pair-groups. Distance is not defined
when origin and destination regions are identical.
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Table A6: Parameter values

Parameter Value Approach Source Appendix

1-α Share of expenditure on housing 0.33 Set Statistisches Bundesamt (2020) -
ρ Discount rate 0.11 Set Moore and Viscusi (1988) -
ι Tax rate 0.49 Set OECD (2017) -
β Share of land in housing 0.19 Estimated Combes et al. (2019) K.2.2

κθ Density elasticity of productivity 0.001-0.042 Estimated Combes et al. (2008) K.2.1

γθ Migration elasticity 0.043-0.60 Estimated Artuç et al. (2010) K.2.3

τθi.j=i Migration cost (iceberg) 0 Set Assumption -

τθi,j 6=i Migration cost (iceberg) 6.4-68.3 Estimated OD-FE in migration gravity | γθ K.2.4

Bθij,t Bilateral amenity 0.03-17.84 Estimated Residual in migration gravity | γθ K.2.5

Notes: If the approach is ”set”, we borrow a parameter value from the paper given under ”source”. If the approach is
”estimated”, we estimate the parameter following the estimation strategy in the paper given under ”source”. For details,
we refer to the section given under ”appendix”.

Table A7: Parameter estimates: Average effects by group

Agglomeration
elasticity

Migration
resistance

Migration
elaticity

Migration
iceberg cost

Monetised
migration cost

κθ ln τθij × γθ γθ τθij e1000

Female 0.014∗∗∗ 0.284∗∗∗ -0.141∗∗∗ 9.669∗∗∗ -51.783∗∗∗

(0.00) (0.00) (0.02) (0.01) (0.04)
31-50 years 0.010∗∗ 0.524∗∗∗ 0.153∗∗∗ -7.963∗∗∗ 32.498∗∗∗

(0.00) (0.00) (0.03) (0.01) (0.05)
51-65 years 0.003 0.839∗∗∗ 0.148∗∗∗ -8.177∗∗∗ 37.859∗∗∗

(0.00) (0.00) (0.02) (0.02) (0.06)
Apprenticeship 0.016∗∗ 0.427∗∗∗ 0.239∗∗∗ -24.122∗∗∗ 46.342∗∗∗

(0.01) (0.00) (0.04) (0.02) (0.08)
Tertiary education 0.012∗ -0.256∗∗∗ 0.071+ -16.032∗∗∗ 120.518∗∗∗

(0.01) (0.00) (0.04) (0.02) (0.08)
Constant -0.001 6.436∗∗∗ 0.146∗∗∗ 44.496∗∗∗ 108.045∗∗∗

(0.01) (0.00) (0.04) (0.02) (0.08)

Unit Group O-D-group Group O-D-group O-D-group
O-D effects - Yes - Yes Yes
Observations 18 355320 18 355320 355320
R2 .86 .971 .935 .936 .944

Notes: O = origin; D = destination. All explanatory variables are binary indicator variables. Stan-
dard errors in parentheses. O-D-group-level regressions weighted by O-D-group flows.
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worker groups, with κθ estimates ranging from close to zero for young male workers to 0.042

for skilled and experienced female workers. In line with skill-biased returns to agglomeration

(Baum-Snow and Pavan, 2013), we generally obtain greater κθ estimates for groups with higher

skills. There is also a systematic gender gap in κθ favouring women, implying a greater gender

pay gap in rural areas. Finally, young groups benefit little from agglomeration, suggesting that

the productivity advantage associated with urban density materialises through an interaction

with experience. An econometric analysis of the conditional variation in κθ-estimates by group

is in Table A7.

Figure A4: Density elasticity of productivity (κ)

Notes: Elasticity estimates from regressions of AKM-adjusted log wages (see section K.1.5) against log density, control-
ling for zone effects (former East vs. former West Germany) and using 1907 log population density as an instrument.
Confidence bands are at the 95% level.

K.2.2 Land share in housing (β)

We use a similar approach as in K.2.1 to identify the exogenous and endogenous determinants

of housing costs. We define exogenous housing TFP as ηi,t = − exp(ãPg + ePi,t), where ãPg

captures zone-specific legacy effects from the division period and ePi,t is a structural residual.

Log-linearisation of Eq. (8) then yields the empirical specification:

ln pi,g(i),t = aPg + β ln
(Xi,t

T̄i

)
+ ePi,g(i),t, (31)

where aPg = β ln (1− α)β(1− ι) + ãPg collects all scalars in Eq. (8) and the effects of zone-

specific housing TFP. Given set values for α and ι and an estimated value for β, exogenous

housing TFP is uniquely identified as ηi,t = ((1 − α)β(1 − ι))β(Xi,t/T̄i)
β/pi,t. To address the

concern that contemporary productivity shocks may be correlated with output and housing
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Table A8: Output density elasticity of housing cost

(1) (2)
Log housing costs
(region-year-specific)

Log housing costs
(region-year-specific)

Log output density (β)
0.189***
(0.02)

Log employment density
0.195***
(0.02)

Zone effects Yes Yes

Observations 1,551 1,551
R2 .317 .299

Notes: Units of observation are labour market region-year cells. Housing costs is
the annualised house price index inferred from micro data as described in the data
section K.1.5. We use the 1907 log population density as an instrument for log
of output density and log employment density. Zone effects distinguish between
former East and West Germany. Standard errors in parentheses clustered on labour
market areas.* p < 0.1, ** p < 0.05, *** p < 0.01

TFP, we use the deep lag of population density as an instrument for output density and cluster

standard errors on regions.

In Column (1) in Table A8 we obtain an estimate of the output elasticity of housing costs

β of 0.189. Note that because in our framework productivity varies across locations, there is a

density-induced demand-side effect on wages in addition to the supply-side effect of employment

density on housing costs that arises because of inelastically supplied land (see Appendix J.1 for

a formal derivation). Thus, unlike Combes et al. (2019) who model the cost of agglomeration

as dependent on population and land area, we have output density Xi,t/T̄i = (
∑

θ L
θ
i,tϕ

θ
i,t)/T̄i

on the right-hand side of the structural specification. For comparison, we also estimate the

employment density elasticity in Column (2), which takes the value of 0.195. This value is

between the average in the literature of 0.15 reported by Ahlfeldt and Pietrostefani (2019) and

the predicted value of 0.25 for a country with the urban density of Germany (2,800 residents

per km2, see Demographia (2019)) according to the rule of thumb suggested by Ahlfeldt and

Pietrostefani (2019). The value is towards the lower bound of the 0.2-0.27 range reported

for France by Combes et al. (2019), which is consistent with France having a higher urban

density (3,100 residents per km2) than Germany. Notice that the estimated density elasticity

of housing expenditure (1−α)
∂ ln pi,t

∂ ln (Li,t/T̄ )
= 0.066 substantially exceeds our κθ-estimates for all

groups, which is necessary for a well-behaved solution for the SSE. Note that our estimate of β

implies a housing supply elasticity (1− β)/β of about 4.3, which is close to existing structural

estimates (Epple et al., 2010).

K.2.3 Migration elasticity (γθ)

The standard approach to the identification of the migration elasticity is to regress relative (to

internal migration) log migration flows against bilateral differences in log wages at migration

origins and destinations, controlling for leading relative log migration flows (Artuç et al., 2010).

To motivate a similar estimating equation, we start from Eq. (10) and derive the difference
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in migration propensity between stayers and movers in the special case of no sequential move

as (see section J.3.5 for a derivation):

lnχθij|i,t − lnχθii|i,t = γθ
(

lnmθ
ij − lnmθ

ii

)
+ γθ

(
lnBθ

ij,t+1 − lnBθ
ii,t+1

)
+ γθ

(
lnVθj,t+1 − lnVθi,t+1

) (32)

with lnVθj,t+1 the infinite sum of indirect utilities. This sum can be re-written as a sum of

utility in period t+ 1 and the present value of future utilities in the subsequent periods:

lnVθj,t+1 = ln

(
(1− ι)wθj,t+1A

θ
j,t+1

p1−α
j,t+1

)
︸ ︷︷ ︸

utility in period t+1

+

∞∑
s=t+2

(
1

1 + p

)s−(t+1)

ln

(
(1− ι)wθj,sAθj,s

p1−α
j,s

)
+

lnBθ
jj,t+2

ρ (1 + ρ)︸ ︷︷ ︸
present value of future utilities in the subsequent periods

The infinite sum of indirect utilities in the next period simply corresponds to the present

value of future utilities from t+ 1, discounted by one period:

lnVθj,t+2 = (1 + ρ)

∞∑
s=t+2

(
1

1 + p

)s−(t+1)

ln

(
(1− ι)wθj,sAθj,s

p1−α
j,s

)
+

lnBθ
jj,t+3

ρ (1 + ρ)

so that we have

lnVθj,t+1 = ln

(
(1− ι)wθj,t+1A

θ
j,t+1

p1−α
j,t+1

)
+

1

1 + ρ
lnVθj,t+2. (33)

Moreover, lnVθj,t+2 is a determinant of migration probabilities in period t+ 2:

lnχθij|i,t+1 − lnχθii|i,t+1 = γθ
(

lnmθ
ij − lnmθ

ii

)
+ γθ

(
lnBθ

ij,t+2 − lnBθ
ii,t+2

)
+ γθ

(
lnVθj,t+2 − lnVθi,t+2

)
.

(34)

Hence, we can use Eq. (34) in Eqs. (33) and (32) to write current relative migration propensities

as a function of bilateral wages next period and relative migration propensities one period
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forward:

lnχθij|i,t − lnχθii|i,t − γ
θ

[
ln
(

(1− ι)wθj,t+1

)
− ln

(
(1− ι)wθi,t+1

)]
− 1

1 + ρ
(lnχθij|i,t+1 − lnχθii|i,t+1) +

(
1− 1

1 + ρ

)
γθτ θij

= γθ
(

ln
(
pα−1
j,t+1

)
− ln

(
pα−1
i,t+1

))
+ γθ

(
lnBθ

ij,t+1 − lnBθ
ii,t+1

)
− γθ

1 + ρ

(
lnBθ

ij,t+2 − lnBθ
ii,t+2

)
+
γθ(lnBθ

jj,t+2 − lnBθ
ii,t+2)

ρ (1 + ρ)

−
γθ(lnBθ

jj,t+3 − lnBθ
ii,t+3)

ρ (1 + ρ)2 + γθ
(

lnAθj,t+1 − lnAθi,t+1

)
.

(35)

Following Artuç et al. (2010), we estimate our key parameter of interest using GMM. To this

end, we collect the terms on the right-hand side of Eq. (35) in a structural residual Eθij,t, take α,

ι, and ρ as given, and normalise all variables by their geometric within-origin-destination-group

mean, which removes time-invariant migration costs τ θij . To identify γθ we make the following

identifying assumption:

E(Z̄θij,tĒθij,t) = 0, (36)

where Z̄θij,t is a (n ≥ 1)×1 vector of instrumental variables which we require to be uncorrelated

with the structural residual and the upper bar indicates normalisation by the geometric mean.

Substituting Eq. (35) into Eq. (36) (via Eθij,t), we obtain n moment conditions:

E

(
Z̄θij,t

[
ln χ̄θij|i,t − ln χ̄θii|i,t − γ

θ
(

ln
(
w̄θj,t+1

)
− ln

(
w̄θi,t+1

))
− 1

1 + ρ
(ln χ̄θij|i,t+1 − ln χ̄θii|i,t+1)

])
= 0.

(37)

Eq. (37) excludes rents which are in the structural residual Eθij,t. This not only makes the

estimation equation similar to the literature, it also avoids an endogeneity problem since our

model predicts that amenities in the structural residuals (A and B terms) capitalise into rents.

The conventional approach is to estimate Eq. (37) using lagged values of relative migra-

tion probabilities and relative wages as instruments for leading relative migration probabilities

and relative wages (Artuç et al., 2010; Caliendo et al., 2019b). This approach addresses the

concern that contemporaneous shocks that affect wages and leading migration decisions may

also affect components of the structural residual term. A remaining concern is that if there

is serial correlation in the instrumented variables and the structural residuals, the identifying

assumption will be violated.

Against this background, we consider it worth exploiting an alternative source of identifying

variation that is specific to the German context. It is rather uncontroversial that after unifica-

tion former East Germany had a lower fundamental labour productivity owing to an inferior
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production technology (Burda and Hunt, 2001). Over time, western technology diffused to the

eastern parts of Germany, reducing the differences in fundamental productivity inherited from

the cold-war era. To capture the convergence in fundamental labour productivity between the

formerly separated parts of the country, we compute for each year, group, and bilateral route

a regional relative wage, where we replace the observed wages for labour markets i and j with

the average wage in zone r, s ∈ East,West a labour market falls in. We then use lags of these

relative zone wages
(
ln
(
w̄θs,t

)
− ln

(
w̄θr,t

))
as sole (excluded) instruments for the identification

of the parameters of interest. Effectively, this approach restricts the identifying variation to

changes in cross-border differences in wages over time.

The GMM estimation results are in Table A9. With the canonical instrumental variables

we estimate a migration elasticity of about 0.1 (Column 1), which is significantly below the

implied value of 0.5 for year-on-year variation reported by Caliendo et al. (2019b). With

our preferred identification using the zone wage gap, we estimate a migration elasticity of

0.4 (Column 2), which is closer to the literature. A cause for concern is that the discount

parameter is either very large (Column 2) or negative and, hence, theory-inconsistent (Column

1). This is in line with the notion in the literature that the identification of these parameters

with the state-of-the-art estimation strategy is weak (Artuç et al., 2010). Hence, we repeat

the estimation, setting the discount parameter to our preferred value of 0.11 taken from the

literature (Moore and Viscusi, 1988). Once we do this, reassuringly, the migration elasticity

estimates using both sets of instruments are close (Columns 3 and 4). Our preferred estimate

of the migration elasticity of 0.295 (Column 4) is moderately smaller than the 0.5-estimate for

the U.S. by Caliendo et al. (2019b), which implies that workers in Germany are, on average,

somewhat less responsive to migration incentives than in the U.S.

To obtain group-specific estimates of the migration elasticity, we build on our preferred

specification (Column 4) whose estimation we repeat sequentially, keeping only specific gender,

age, and skill groups. Thus, we estimate 2 (gender groups) + 3 (age groups) + 3 (skill groups)

= 8 specifications. Compared to the alternative of estimating 2×3×3 = 18 = Θ group-specific

models, this approach is less susceptible to producing outlier estimates while still allowing

for sizable heterogeneity. We disaggregate our gender- (γg), age- (γa), and skill- (γs) specific

Table A9: Migration elasticity estimates (uniform)

(1) (2) (3) (4)

Migration elasticity 0.118∗∗∗ 0.443∗∗∗ 0.255∗∗∗ 0.295∗∗∗

γ (0.03) (0.15) (0.02) (0.08)
Discount -0.274∗∗∗ 0.376∗∗∗ - -
parameter ρ (0.01) (0.03) - -

Parameter ρ Estimated Estimated Set to 0.11 Set to 0.11
IV Canonical Regional wage gap Canonical Regional wage gap

Notes: GMM estimation. Unit of observation is year-group-region-route (origin-destination
pair). Weighting. Canonical instrumental variables are lags 1-3 of relative migration proba-
bilities and relative wages. Regional wage gap instrumental variables are lags 1-3 of the year-
group-route-specific difference in the regional average wage, where regions are former East- and
West-Germany. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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estimates to group-θ-specific estimates as follows:

γθ(g,a,s) = wθ,gγg + wθ,aγa + wθ,sγs,

where the weights are defined as the size of a specific θ-group relative to the size of the age-, sex-

or skill-group. We obtain standard errors for the resulting γθ(g,a,s) by means of bootstrapping

in 1,000 iterations. The results in Figure A5 reveal sizable heterogeneity in the migration

elasticity across groups. In particular, it appears that the migration elasticity is larger for

male than for female workers. It is largest for the middle skill and the middle age category.

Figure A5: Migration elasticity estimates (γ) by group

Note: GMM estimates by gender, age, and skill groups, disaggregated to gender-age-skill groups. Bootstrapped standard
errors in 1,000 iterations.

K.2.4 Migration cost (τ θij)

A log-linearised version of Eq. (10) provides the micro foundations for a non-parametric

reduced-form migration gravity equation:

lnM θ
ij,t = cθ +Oθi,t +Dθ

j,t + m̃θ
ij + B̃θ

ij,t, (38)

where empirically we use the group-specific flow of workers leaving region i for region j in year

t after moving ln (Lθi,t) into the origin-year fixed effect

Oθi,t = ln
(
Lθi,t

)
+ ln

(∑
n∈J

(Bθ
in,tVθn,tmθ

in)γ
θ

)
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that also captures multilateral resistance. Dθ
j,t = γθ ln(Vθj,t) is a destination-group-year effect

capturing migration pull factors while B̃ij,t = γθ lnBij,t is a structural residual capturing

bilateral amenity, and m̃θ
ij = cθ − γθ × τ θij is an origin-destination effect identifying migration

resistance up to a group-specific constant cθ. We use the theory-consistent restriction τ θij,j=i =

0, which implies that cθ = m̃ij,j=i to identify τ θij =
m̃θij,j=1−m̃θij

γθ
.

We estimate Eq. (38) using a Poisson Pseudo Maximum Likelihood estimator (Head and

Mayer, 2014). The non-parametric nature of Eq. (38) implies that we require no identifying

assumption other than that group-specific shocks to bilateral amenity Bθ
ij,t are random within

origin-destination pairs. For selected origin-destination routes, we do not observe any migration

flow throughout our observation period. In these cases, we impute m̃θ
ij using a group-specific

higher-order polynomial regression of m̃θ
ij against bilateral distance.

In Figure A6, we present the distribution of the estimated migration resistance effects

γθτ θij,t = m̃θ
ij by group and geographic distance. These reduced-form effects control for arbitrary

migration push and pull factors and provide first evidence on which groups exhibit the largest

resistance to migration, either because they face large migration costs (reflected in a large τ θij),

or because of limited idiosyncrasy in their location choice (reflected in a large γθ). Migration

resistance increases in distance at a decreasing rate. There is a kink at about 100 km. The

differences in migration resistance across groups are also quantitatively important as revealed

by the results from a regression of the estimated resistance parameters against categorical

group identifier variables presented in Table A7. The migration resistance of old workers (age

between 51 and 65 years) is 131% (=(exp(0.839)-1)*100%) larger than that of young workers

(aged 16-30). Likewise, women have an about 33% (=(exp(0.284)-1)*100%) higher migration

resistance than men. Skilled (apprenticeship) and high-skilled (tertiary education) workers’

migration resistance is about 53% (=(exp(0.0.427)-1)*100%) higher and 23% (=(exp(-0.256)-

1)*100%) lower than for unskilled workers (no apprenticeship).

K.2.5 Bilateral amenity (Bθ
ij)

From Eq. (38), it is straightforward to recover Bθ
ij =

(
B̃θ
ij

) 1

γθ . In a theory-consistent manner,

we rationalise zero-migration flows with origin-destination-group-year cells by setting Bθ
ij = 0.

K.3 Structural fundamentals

This section complements Section D.3 in the main paper. We show how to invert fundamental

labour and housing productivity and introduce the dynamic solver used to invert QoL.

K.3.1 Fundamental labour productivity

We invert fundamental labour productivity ψθi,t using observed data on mix-adjusted wages

wθi,t, employment Lθi,t, land area T̄i, our estimate of the density elasticity of productivity κθ

and the first-order condition of labour demand using Eq. (6) as follows:
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Figure A6: Migration resistance by group and distance

Notes: Migration resistance identified as origin-destination-group effects from panel PPML estimation of a migration
gravity model controlling for origin-year-group and destination-year-group effects. Confidence bands are at the 95% level.

ψθi,t = wθi,t

(
Li,t
T̄i

)−κθ
.

K.3.2 Fundamental housing productivity

We invert fundamental housing productivity ηi,t using observed data on mix-adjusted housing

rents pi,t, employment Lθi,t, wages wθi,t, land area T̄ θi,t, our estimate of the land share β and

housing market clearing using Eq. (8) as follows:

ηi,t =

(1− α)β(1− ι)
∑

θ w
θ
i,tL

θ
i,t

p
1
β

i,tT̄i

β

.
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K.3.3 Quality of life (Aθi,t)

The dynamic solver introduced in Section D.3 is a nested dynamic programming algorithm

which operates according to the procedure outlined in the programming flowchart in Figure

A7. Intuitively, there is an iterative fixed-point algorithm (FP) that solves for Āθi,t for given

guesses of Lθi,t, a dynamic programming algorithm (DP) that delivers Lθi,t for guessed values

of Āθi,t and an outer loop (OL) that forwards the inputs of the former to the latter and vice

versa until guesses and solutions are consistent. We introduce the three building blocks of the

nested structure in more detail below.

Fixed-point programming algorithm (FP). We use a Newton algorithm to obtain nu-

merical solutions for QoL Āθi,t which we treat as an unobserved structural fundamental. The

algorithm finds a numerical solution of Āθi,t using Eq. (10). It uses the following inputs: Ob-

served data on migration probabilities χθij,t, values of the structural parameters τ θij (migration

costs), γθ (migration elasticity), ι (tax rate), Bθ
ij (bilateral amenity), the employment vector

Lθi,t which for given fundamental labour productivity ψθi,t and fundamental housing produc-

tivity ηi,t maps to future wages wθi,t+s and rents pi,t+s. The iterative procedure starts from

uniform guesses Āθi,t
f=1 = 1. Given the inputs, Eq. (10) delivers predicted migration probabil-

ities χ̂θij,t and a multiplicative adjustment factor
∑

j χ̂
θ
ij,t/

∑
j χ

θ
ij,t which we apply to Āθi,t

f=1

before moving into the next iteration f = 2. The procedure ends when the adjustment factor

approaches one. The FP consists of the processes connected by the red lines in the program-

ming flow chart in Figure A7. Note that in QSMs with static expectations, where data are

rationalised assuming a SSE, the FP algorithm alone would suffice to invert quality of life.

Dynamic programming algorithm (DP). Exploiting the dynamic structure of the model,

the DP forecasts Lθi,t using the following inputs: structural parameters {α, β, ρ, ι, γθ, ζθ, κθ,

Bθ
ij,t, τ

θ
ij}; inverted labour productivity ψθij and housing productivity ηi,t; observed employment

Lθi,t and land area T̄i; guessed values of Āθi,t and Lθi,t, which map into vectors of guessed wages

wθ
i, and rents pi,t via the first-order condition of labour demand (Eq. (6)) and housing market

clearing (Eq. (8)). The DP begins the iterative procedure in iteration s = 0 where it uses the

above inputs to forecast migration probabilities χθij|i,t+s using Eq. (10). The labour supply Eq.

(12) then delivers employment Lθi,t+s+1 in the next period. Lθi,t+s+1 maps to wages wθi,t+s+1

via the first-order condition of labour demand (Eq. (6)). Lθi,t+s+1 and wθi,t+s+1 give regional

output Xi,t+s+1 =
∑

θ w
θ
i,t+s+1L

θ
i,t+s+1 which maps into rents pi,t+s+1 via housing market

clearing (Eq. (8)). Unless the dynamic solver has converged to the dynamic equilibrium, the

forecasts of Lθi,t+s+1, wθi,t+s+1, and pi,t+s+1 will not equate to the respective (s+1)-th elements

in the vector of guessed employment Lθi,t(1,s+1)
, wages wθ

i,t(1,s+1)
, and rents pi,t(1,s+1). Hence,

we adjust wage and rent guesses concerning future periods v > s + 1 by the multiplicative

adjustment factors wθi,t+s+1/w
θ
i,t(1,s+1)

and pi,t+s+1/wi,t(1,s+1). This way, the dynamic solver

“learns” from mismatches between guessed and predicted values in every iteration of the DP in

every iteration of the OL as opposed to only once per iteration of the OL. This greatly enhances
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the speed of the solver. Then, the iterative procedure starts over again and continues until

in iteration S employment is stationary (Lθi,t+s = Lθi,t+s+1). The DP consists of the processes

connected by the green lines in the programming flow chart in Figure A7.

Figure A7: Dynamic solver

Notes: Programming flowchart that illustrates the procedure of the dynamic solver introduced in Section D.3. Blue lines
outline the outer loop. Red lines mark the nested fixed-point algorithm solving for Aθi,t. Green lines mark the nested

dynamic programming algorithm that forecasts Lθi,t. Bold letters are (J × Θ) × H matrices of for H = 1, 000 periods

into the future. Other letters are (J ×Θ)× 1 vectors for one period. Letters with *-superscripts indicate solved outputs.
Other letters indicate guessed inputs. To ease the presentation we omit all indices {θ, i, t} in the flow chart.

Outer loop (OL). The OL indicated by the blue lines in the flow chart in Figure A7 nests

the FP and DP algorithms. It feeds the output of the FP (Āθi,t) as input into the DP and the

output of the DP (Lθi,t) as input into the FP. Intuitively, the OL treats the solutions for Āθi,t
and Lθi,t as a fixed point that is found in an iterative procedure when the guessed input into

the FP is identical to the output of the DP and vice versa.

Before the dynamic solver enters the OL, the first step is to define initial values for

{Lθi,t,wθ
i,t,pi,t} which are critical inputs for the FP. This is the first process in Figure A7

after “Start”. Since we do not know a priori the number of years S over which the spatial

economy converges to a SSE, we begin with a long time horizon of H = 1, 000 years over which

agents form their expectations. Note that H exceeds S for all applications of the solver we

report in this paper. As initial guesses for the employment vector Lθi,t
0

we use the values we
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observe in year t for which the model is being quantified:

Lθi,t
0

= Lθi,t, L
θ
i,t, ..., L

θ
i,t︸ ︷︷ ︸

Helements

.

Given the first-order condition of labour demand (Eq. (6)) and housing market clearing (Eq.

(8)), Lθi,t
0

maps directly to {wθ
i,t

0
,pi,t

0} for given parameters and fundamental labour and

housing productivity.

With these inputs, the first iteration l = 1 of the OL begins. The next processes until the

first decision rule (A = A∗), including the feedback loop marked by red lines, constitute the

FP algorithm. Once the decision rule is satisfied, the OL forwards the solutions for Āθi,t
l=1 to

the DP which is represented by the processes up to the next decision rule (Lθi,t+s = Lθi,t+s+1),

including the green loop. Once this decision rule is satisfied, the OL evaluates whether the

values {wθ
i,t
l=1
,pi,t

l=1} solved by the DP correspond to the guessed inputs into the FP. Until

this criterion is satisfied, the OL updates the guesses and the procedure starts over gain.

Once the OL converges in iteration L, we crop Lθi,t
L
,wθ

i,t
L
,pi,t

L to SL elements delivered

by the DP in the last iteration of the OL. Āθi,t
L represent the solution to unobserved QoL.

Hence, the model is fully quantified.

K.4 Transition into the stationary spatial equilibrium

This section complements Section D.4 in the main paper.

Figure A8 summarises how the spatial economy converges from the TSE to the SSE using

the sum of absolute deviations between TSE and SSE values across region-groups as a bench-

mark. Depending on the outcome, about 55%-70% of the spatial convergence occurs after 30

years.

Figure A8: Spatial convergence

Notes: All trends show sum of absolute deviations from SSE values in an outcome across group-regions. 2017 starting
values. Model-based forecasts.
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Figure A9 scatters the SSE values in selected outcomes against the TSE values. Wages and

rents are relatively closely aligned. While there are subtle differences in employment and skill

shares, the correlations are still strong.

Figure A9: SSE vs TSE values

(a) Employment (b) Wage

(c) Rent (d) High-skilled share

Note: Unit of observation is region-group in panels a), b), d) and regions in c). Ratio of model-based forecasts (SSE) over
observed data that are perfectly rationalized by the model (TSE).

Figure A10 maps the ratios of SSE values over TSE values in selected outcomes at the

regional level. As the economy converges to the SSE, the eastern states gain population at

the expense of the western states. As the population increases, congestion on housing markets

leads to rising rents. In contrast, there is no obvious spatial pattern in the change in skill

composition and wages.

K.5 Overidentification

This section complements Section D.5 in the main paper. We correlate some of the structural

parameters and structural fundamentals obtained from the model quantification with observ-

able characteristics not used in the quantification of the model. Previewing our results, we find

that observable characteristics correlate with model-derived fundamental labour productiv-

ity, fundamental housing productivity, and migration costs in an intuitively plausible manner.

Moreover, the model forecasts changes in employment over time for the transition from the

TSE to the SSE that are closely correlated with employment changes observed in data.

Labour productivity. In Table A10, Column (1), we regress fundamental labour productiv-

ity ψθi,t=2017, inverted as described in Section K.3.1, against a set of dummy variables denoting

some German supra-regions. We control for group fixed effects to net out composition effects.
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Figure A10: Ratio of SSE over TSE values

(a) Employment (b) Wage

(c) Rent (d) High-skilled share

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Ratio of model-based
forecasts (SSE) over observed data that are perfectly rationalized by the model (TSE).
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We find that fundamental labour productivity is about 7% smaller in the eastern states, likely

a legacy of the Cold War era. Fundamental productivity is somewhat higher, on average,

near the Alps. In keeping with intuition, a casual inspection of fundamental productivity

across regions reveals a greater productivity at peripheral regions where the local economies

are dominated by global companies such as Volkswagen in Wolfsburg (see Figure A11). Adding

industry sector shares in Column (2) reveals that part of the east-west gap is attributable to

industry composition. In keeping with intuition, regions with a high share of tradable services

tend to be more productive.

Table A10: Fundamental productivity

(1) (2) (3) (4)
Labour

productivity
Labour

productivity
Housing

productivity
Housing

productivity

ψθi,t=2017 ψθi,t=2017 ηi,t=2017 ηi,t=2017

East (0,1) -0.067∗∗∗ -0.039∗∗∗ 0.263∗∗∗ -0.072
(0.01) (0.01) (0.09) (0.10)

Alps (0,1) 0.040∗∗∗ 0.051∗∗∗ -0.517∗∗∗ -0.639∗∗∗

(0.01) (0.02) (0.14) (0.19)
Coast (0,1) -0.021∗∗∗ -0.002 0.007 -0.065

(0.01) (0.01) (0.15) (0.12)
Agricultural share (%) 0.002 0.019

(0.00) (0.04)
Construction (%) -0.001 -0.029

(0.00) (0.03)
Tradable services (%) 0.005∗∗∗ -0.083∗∗∗

(0.00) (0.01)
Manufacturing (%) 0.002∗∗∗ -0.007

(0.00) (0.01)
Constant 10.316∗∗∗ 10.220∗∗∗ -2.278∗∗∗ -1.045∗∗∗

(0.00) (0.02) (0.05) (0.39)

Group effects Yes Yes - -
Observations 2,538 2,538 141 141
R2 .982 .985 .0794 .413

Notes: Unit of observation is region-groups in (1) and regions in (2). (1) indicates binary
indicator variables. Standard errors in parentheses.

Housing productivity. In Table A10, Column (3), we regress fundamental housing pro-

ductivity ηi,t=2017, inverted as described in Section K.3.2, against a set of dummy variables

denoting the German supra-regions. We find that housing productivity is significantly higher

in the eastern states. This is a plausible finding given the country’s history. During the division

period, former East Germany was governed by a socialist planning regime with an emphasis on

the provision of affordable housing. The relatively large quantities of housing provided came

at the expense of poor housing quality. Following Germany’s unification, favourable tax reliefs

to real estate investors led to a construction boom and a rejuvenation of the housing stock

(Flockton, 1998). Hence, it is plausible that as of 2017, there is a greater supply of housing

services for given levels of geographic land area and demand. Likewise, it is plausible, that

there is a negative housing productivity effect near the Alps as mountainous areas are more

difficult to develop. Adding industry shares in Column (4) reveals a negative correlation be-
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tween tradable services and housing productivity. One interpretation that would be in line with

anecdotal international evidence is that places with high labour productivity tend to develop

restrictive planning systems to protect amenities that are valued by the high-skilled (as, for

example, in some Californian cities). Since tradable services are concentrated in cities in the

western states (e.g. Frankfurt, Munich, Dusseldorf), the east-west gap is reduced close to zero

conditional on the industry controls.

Figure A11: Fundamental labour and housing productivity

(a) Labour productivity ψi,t=2017 (b) Housing productivity ηi,t=2017

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Values inverted as
described in Sections K.3.1 and K.3.2. Group-region productivities aggregated to regions using TSE sector shares.

Migration costs. In Table A11, we correlate our parameter estimates capturing migration

costs with measures of migration distance which, intuitively, should be positively correlated.

Indeed we find that migration resistance increases in distance at an elasticity of 1.74 (Column

1). With a negative sign, this parameter corresponds to the distance elasticity of migration

flows that is frequently estimated by reduced-form gravity models. Tombe and Zhu (2019) and

Imbert and Papp (2019) estimate similar elasticities for China and India. Bryan and Morten

(2019) report a distance elasticity of migration of 0.7 for Indonesia. In our model, migration

costs are monitored by the origin-destination-group-specific iceberg migration cost parameter

τ θij . This parameter increases in distance at an elasticity of 0.245 (Column 3).
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Table A11: Migration costs vs. geographic and social distance

Migration
resistance

Migration
resistance

Migration
iceberg cost

Migration
iceberg cost

τθij × γθ τθij × γθ τθij τθij
Ln geographic distance 1.740∗∗∗ 0.815∗∗∗ 0.245∗∗∗ 0.148∗∗∗

(0.01) (0.03) (0.00) (0.00)
Ln social distance 0.647∗∗∗ 0.068∗∗∗

(0.02) (0.00)

Group effects Yes Yes Yes Yes
IV - Yes - Yes
Observations 355,320 355,320 355,320 355,320
R2 .808 .904 .933 .86

Notes: Unit of observation is origin-destination-group. Ln social distance is the inverse
of the log of the Facebook social connectedness index (Bailey et al., 2018). Log historic
dialect (Falck et al., 2012) similarity is used as an instrumental variable for log social
distance where indicated. Standard errors in parentheses. Regressions weighted by
O-D-group flows.

To shed some light on the mechanisms through which the geographic distance effect oper-

ates, we utilise a social distance measure defined as the inverse of an index that summarises

how connected Facebook users in two regions are (see Appendix K.1.7 for further details on

the social connectedness index). Figure A12 shows an approximately log-linear relationship

between social distance and our estimated migration cost parameters τ θij , suggesting that social

ties may reduce the cost of rebuilding social capital at a migration destination. As expected,

social distance is positively correlated with geographic distance, a well-known feature of social

networks (Bailey et al., 2018). The geographic proximity effect is also visible in a measure of

cultural distance which is the inverse of historic dialect similarity (Falck et al., 2012). Hence, it

is no wonder that social distance and cultural distance are also positively correlated, implying

that regions that are closely connected today usually have had cultural ties in the past.

When adding log social distance as an additional covariate in Columns (2) and (4) in Table

A11, we use log cultural distance as an instrumental variable to address reverse causality from

migration cost to social connectedness. We find that migration costs increase significantly in

social distance, controlling for geographic distance. Moreover, adding social distance, reduces

the geographic distance effect by 53% (Column 2) and 40% (Column 4), suggesting that the

cost of rebuilding social capital may be an important component of migration costs.

To summarise how the relationship between migration costs and social distance varies

by group, we first regress the estimated migration cost parameter τ θij on log social distance

and geographical distance by group θ. We estimate the average difference in the estimated

coefficients of log social distance between gender, sex and skill groups in a second-step regression

reported in Table A12. Our preferred instrumental variable results reveal that the elasticity

of migration costs with respect to social distance is relatively large for middle-skilled and

high-skilled workers.

Employment (out-of-sample). Our data set contains all critical variables for the inversion

of the model from 2007 onward. To compare the TSE to SSE transition path forecast by the
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Figure A12: Migration cost vs. bilateral distance measures

Note: Social distance is the inverse of the Facebook social connectedness index (Bailey et al., 2018). Cultural distance is
the inverse of historic dialect similarity (Falck et al., 2012). Geographic distance is the great-circle distance. Observations
are grouped into 10−6 on the x-axis. All distance and cost measures computed for pairs of German local labour markets.

dynamic solver to data, we invert the model from a 2007 TSE and regress the model-based

employment forecast on values observed in the data in Table A13. This is a demanding out-

of-sample over-identification test as we expect all fundamentals to be affected by exogenous

shocks, hence the within-region correlation over time is necessarily noisy. We expect a positive

correlation to the extent that these shocks are orthogonal to the TSE deviations from the SSE

since the model can predict mean reversion and the causal effects of known exogenous shocks,

but not the occurrence of future events.

Yet, the within-region elasticity of forecast employment with respect to observed employ-

ment is precisely estimated at 0.775 (t-stat > 25). Weighting by employment, the estimated

elasticity increases to 0.852 (t-stat > 25). Hence, the model successfully captures a mean

reversion tendency that is a feature of the data, in particular for the larger labour markets.

Consistent with a less favourable signal-to-noise ratio the correlation is weaker at the group-

region level where cell sizes are much smaller. Nevertheless, if we weight by the size of the

region-group cells the elasticity, at 0.493 is still positive and precisely estimated (t-stat > 45).
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Table A12: Migration cost against social distance (by group)

OLS 2SLS

Female 0.004 0.004
(0.00) (0.01)

31-50 years -0.015∗∗∗ -0.000
(0.00) (0.01)

51-65 years -0.036∗∗∗ -0.003
(0.01) (0.00)

Apprenticeship 0.071∗∗∗ 0.055∗∗∗

(0.00) (0.01)
Tertiary education 0.051∗∗∗ 0.049∗∗∗

(0.00) (0.01)
Constant 0.084∗∗∗ 0.023∗∗

(0.01) (0.01)

Observations 18 18
R2 .971 .885

Notes: The units of observation are labour market re-
gion pairs. The dependent variable is the estimated co-
efficient of log social distance from separate regressions
of the estimated bilateral migration costs τθij on log ge-
ographical and log social distance for each θ-group. In
the 2SLS specification, cultural distance is used as an
instrumental variable for social distance. Robust stan-
dard errors are shown in parentheses.

Table A13: Employment: Model-based forecast vs. data

Ln employment
(2007-2017 in data)

Ln employment
(2007-2017 in data)

Ln employment
(2007-2017 in data)

Ln employment
(2007-2017 in data)

Lθi,t Lθi,t Lθi,t Lθi,t
Ln employment (2007-2017, 0.775∗∗∗ 0.852∗∗∗ 0.091∗∗∗ 0.493∗∗∗

forecast from 2007 TSE) (0.03) (0.03) (0.01) (0.01)

Unit Region-year Region-year Region-group-year Region-group-year
Time effects Year Year Year-group Year-group
Location effects Region Region Region-group Region-group

Weights - Region emp. - Region-group emp.
Observations 1551 1551 27918 27918
R2 1 1 .998 .999

Notes: Employment forecast from a 2007 TSE using the dynamic solver. Year and year-group effects capture the effects
in changes in the size of the workforce that occur in the data but not in the model-based forecast. Standard errors in
parentheses.
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L Measuring quality of life

This section complements Section E in the main paper.

L.1 Spatial variation in quality of life

Table A14 presents estimates of the elasticity of RR-QoL with respect to DSM-QoL by worker

group that correspond to the log-linear slopes plotted in Figure 5. On average log-point increase

in DSM-QoL is associated with a 0.27-log-point increase in RR-QoL. The estimated log slope

tends to be somewhat larger for male, old, and skilled workers, but remains below 0.5 for all

groups. On average, the DSM-QoL explains almost 60% of the variation in the RR-QoL, with

some variation across groups.

Table A14: Elasticity of Rosen-Roback QoL with respect to dynamic model QoL

Gender Age Unskilled Skilled High-skilled Mean

Male 16-30 years 0.21∗∗∗ 0.32∗∗∗ 0.22∗∗∗ 0.25
Male 31-50 years 0.22∗∗∗ 0.44∗∗∗ 0.27∗∗∗ 0.31
Male 51-65 years 0.29∗∗∗ 0.45∗∗∗ 0.37∗∗∗ 0.37
Female 16-30 years 0.16∗∗∗ 0.20∗∗∗ 0.17∗∗∗ 0.18
Female 31-50 years 0.16∗∗∗ 0.31∗∗∗ 0.21∗∗∗ 0.23
Female 51-65 years 0.19∗∗∗ 0.38∗∗∗ 0.37∗∗∗ 0.32

Mean 0.21 0.35 0.27 0.27

Notes: Point estimates from group-specific region-level regressions of ln RR-
QoL (lnAθi ) against ln DSM QoL (ln Āθi ). All estimates are significant at the
1% level. The last column and row present unweighted row and column means.
QoL inverted from 2017 data.
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L.2 Determinants of quality of life

Figure A13 shows the correlation between DSM-QoL and the big data amenity index introduced

in Appendix D.1 by group. Consistent with the pooled regression results in Table 2, there is a

positive correlation between both measures. Moreover, the correlation is similarly well defined

across groups. Hence, Figure A13 substantiates the notion that social-media-based big data

may serve as a proxy for QoL.

Figure A13: Quality of life (DSM) vs. big data (photos) amenity

Notes: 2017 values. Unit of observation is region-group. Model-based amenity inverts QoL from a TSE assuming that
agents have perfect foresight. Big data amenity is the number of geo-tagged photos shared in social media (Flickr and
Picasa).
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M Policy evaluation

This section complements Section F in the main paper.

M.1 Social welfare

In this section, we derive the social welfare measure introduced in Section F.1. We start with a

social welfare function that allows for inequality aversion in a general form. Following Atkinson

(1970), we assume

W =
1

1− ε
∑
i

∑
θ

(
Rθi,t

)1−ε Lθi
L̄

(39)

for both the baseline (∗) and the counterfactual (c) spatial equilibrium. The degree of inequality

aversion is measured by 0 ≤ ε 6= 1.13

It is instructive to transform Eq. (39) into a scale-dependent partR and a scale-independent

part that penalises for inequality 1−I. The former is simply the weighted average of location-

group utility that for the baseline and the counterfactual is respectively given by:

R∗ =
∑
i

∑
θ

Rθi|i
∗Lθi

∗

L̄
(40)

Rc =
∑
i

∑
θ

R̂θiR
θ
i|i
∗Lθi

∗

L̄
. (41)

Using the “exact hat algebra” approach by Dekle et al. (2007), we express group-region utility

in the counterfactual measured at the migration origin as R̂θiRθi|i
∗
. This way, we account for

changes in expected utility and migration costs which enter into R̂θi .
To derive the inequality measure I, we search for the equally distributed equivalent utility

UEDE (a hypothetical average level of expected lifetime utility across individuals) that leads

to the same level of welfare as with the actual distribution of expected lifetime utilities. Eq.

(39) implies that

W(REDE) =
1

1− ε
(REDE)1−ε, (42)

such that we can solve for REDE by equalising Eqs. (39) and (42). This yields

REDE =

[∑
i

∑
θ

(
Rθi|i

)1−ε Lθi
L̄

] 1
1−ε

.

Using Atkinson’s inequality measure

I = 1− REDE
R

∈ [0, 1], (43)

13We obtain log-utility as a special case for ε = 1.
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we obtain

I∗ = 1−
[∑

i

∑
θ

(Rθi|i∗
R∗

)(1−ε)Lθi
∗

L̄

] 1
1−ε

(44)

Ic = 1−
[∑

i

∑
θ

(R̂θiRθi|i∗
Rc

)(1−ε)Lθi
∗

L̄

] 1
1−ε

(45)

for both the baseline and the counterfactual case, respectively. These derivations allow us to

reformulate Eq. (39) as W = R (1− I) and express changes in social welfare according to Eq.

(18).

M.2 Instrumental variable estimates of air pollution effects

This section complements Section F.2 in the main paper. We discuss our wind-adjusted coal

exposure instrumental variables in greater detail and provide a discussion of the relevance and

the validity of the instrumental variables as well as the underlying mechanisms.

Wind-adjusted coal exposure. To generate exogenous variation in pollution levels, we

follow Deryugina et al. (2019) and Heblich et al. (2020) and exploit that the diffusion of

air pollution is shaped by winds and that, historically, coal deposits attracted high-polluting

industries (for example steal mills) and power plants. We define wind-induced coal exposure

E for region i as follows:

EEi =

∑
i 6=j

CCEj
WDij∑

i 6=j
CCEj
Dij

, (46)

where E = {black coal, brown coal}, CCj is the percentage of the geographic area of region j

with coal deposits, Dij is the crow-flight distance between region i and region j and WDij is

the wind-adjusted distance defined as follows:

WDij =
Dij
wi,r(ij)

1
R

∑R
s=r ws,i(ij)

,

where wr,i(ij) =
Wr,i(ij)∑R
s=rWs,i(ij)

and Wr,i(ij) is the frequency of winds blowing from direction r ∈ R.

The denominator in Eq. (46) is a geographical exposure measure that aggregates CCi

across surrounding regions, weighted by distance. This formulation is closely related to the

market potential by Harris (1954), which has become a workhorse tool in economic geography,

international trade, and urban economics. The fact that we exclude the “self-potential” (for

region i = j) makes our exposure measure similar to spatial lags used in geographic data science

where spatial auto-correlation is viewed as a typical manifestation of the First Law of Geography

(Tobler, 1970). The numerator in Eq. (46) is a meteorological exposure measure constructed

in exactly the same way as the denominator, except that the spatial weights incorporate wind
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patterns. Intuitively, we scale down geographic distance (WDij < Dij) if winds typically blow

from j to i. Likewise, we scale up geographic distance (WDij > Dij) if winds typically blow

from i to j. Through the normalisation by the conventional spatial lag, we net out the effects of

outcomes that are correlated with CC and auto-correlated in space. Since we exclude region i

in the exposure measure EEi , we also exclude any unobserved variables that determine the QoL

and pollution production within the same region. As a result, our exposure measure identifies

the air pollution effect from wind-induced variation, exclusively.

We obtain the frequency distribution of winds by direction r ∈ R for region i ∈ J from

Kasperski (2002). In these data, r is defined in terms of R = 36 10-degree intervals where r = 0

if region j is exactly north of region i. Figure A14 illustrates the frequency distribution for

the four largest German cities using wind rose diagrams. With this information, it is a matter

of simple 2D geometry to compute a radian angle for an ij-route as atan2(yj − yi, xj − xi)
(x and y are coordinates in a projected system) and map it to the wind rose via a standard

radian-to-degree conversion.
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Figure A14: Wind rose diagrams

(a) Hamburg (b) Berlin

(c) Cologne (d) Munich

Note: Own illustration of data provided by Kasperski (2002). Sizes of slices are proportionate to wind frequency. Darker
colours indicate stronger winds. Geographic directions (in a polar coordinate system) refer to the directions from where
winds blow.
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Relevance. Panel (a) of Figure A15 illustrates the regional differences in the concentration

of particulate matter in Germany. With the exception of a few regions along the former inner-

German border, pollution levels are generally higher in East Germany. Within West Germany,

higher concentration levels are recorded around the Ruhr Valley in North-Rhine Westphalia

as well as in parts of the North. Except for Ludwigshafen, where chemical industry is located,

and Passau, pollution levels are considerably lower in South Germany.

Figure A15: Coal cover vs. pollution

(a) PM10 concentration (b) Coal deposits (back and brown)

Note: Unit of observation are 141 labour market regions defined by Kosfeld and Werner (2012). Coal exposure is the
wind-adjusted-distance-weighted aggregated of coal deposits in surrounding regions j 6= i.
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–Figure A15 – continued from previous page

(c) Meteorological black coal exposure (d) Geographical black coal exposure

(e) Meteorological brown coal exposure (f) Geographical brown coal exposure

Note: Unit of observation are 141 labour market regions defined by Kosfeld and Werner (2012). Meteorological coal
exposure is the numerator in Eq. (46). Geographical coal exposure is the denominator in Eq. (46). Intuitively, both
exposure measures are distance-weighted aggregated coal deposits in surrounding regions j 6= i using inverse distance
weights. For the meteorological exposure measures, geographic distances are adjusted for wind directions .
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These differences in the concentration of particulate matter bear a close resemblance to

the spatial distribution of brown and black coal fields which is shown in panel (b). Areas in

which large-scale extraction of coal has been taking place are clearly visible in North-Rhine

Westphalia and the Saarland in West Germany as well as in parts of Saxony, Saxony-Anhalt

and Brandenburg in East Germany.

Panel c) shows a region’s log meteorological exposure to black coal which is based on the

wind-adjusted distances (the numerator of Eq. (46)). The area with the highest concentration

contains the Ruhr Valley as well as the regions to the North-East of the former, because winds

typically blow from the South-West (as shown in Figure A14). Panel d) reflects the geographical

exposure to black coal that is based on adjusted crow-flight distances (the denominator of Eq.

(46)). In contrast to panel c), the iso-exposure lines are approximately concentric, with the

Ruhr Valley being the nucleus of the gradient. Panels e) and f) show the same exposure

measures for brown coal deposits. Intuitively, we identify from wind-induced exposure to coal

deposits, exclusively, by using the log-difference between the two exposure measures depicted

Table A15: Quality-of-life determinants

(1)
lnPM10

(2)
lnPM10

(3)

Āθi
Ln wind-adjusted exposure 0.152∗∗∗ 0.105∗∗∗

to black coal (0.02) (0.02)
Ln wind-adjusted exposure 0.077∗ 0.028
to brown coal (0.04) (0.03)

Ln pollution concentration (pm10) -1.935∗∗∗

(0.69)
East -0.221∗∗

(0.09)
Near Alps (dummy) -0.452∗∗∗

(0.17)
Near coast (dummy) -0.286∗∗∗

(0.10)
Ln crime per capita 0.340∗∗∗

(0.11)
Ln area 0.112

(0.09)
Housing stock destroyed in WWII (%) 0.013∗∗∗

(0.00)
Number of Opera houses 0.178∗∗∗

(0.03)
Ln water area 0.175∗∗

(0.08)

First-stage F-statistic 24.532
Group-year effects Yes Yes Yes
Controls No Yes Yes
Observations 27,918 27,918 27,918
R2 .508 .673 .504

Notes: Unit of observation is region-group-year. Regional pollution is instru-
mented using the wind-adjusted log exposure to black and brown coal as de-
scribed in Section M.2 and are determined net of market access.First-stage F-
Statistic refers to the Kleibergen-Paap rank LM statistic. Standard errors clus-
tered on regions. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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in panels (c) and (d) as well as in (e) and (f) as instrumental variables for air pollution.

Columns (1) and (2) of Table A15 provide a closer assessment of the relationship between

the concentration of particulate matter and the coal exposure IVs. While the conditional cor-

relation of the brown coal exposure measure depends on the specification, black coal exposure

has a positive effect on air pollution levels throughout.

Mechanism. For much of the 19th and the 20th century, coal was an essential input for

energy-intense industries and coal power plants which co-located with coal deposits due to

transport costs that used to be much higher than they are today (Mohammed and Williamson,

2004; Fernihough and O’Rourke, 2021). Path-dependency is a well-documented feature of

economic geography (Davis and Weinstein, 2002; Redding et al., 2010; Bleakley and Lin, 2012).

Polluting industries and power plants are no exception and have remained in close proximity

of coal deposits when transport costs fell, making them an indirect source of air pollution. The

advantage of using coal deposits in the exposure measure over polluting establishments is that

the former is exogenously determined by geology while the location of the latter is to some

extent endogenously determined by local economic conditions.

Column (1) of Table A16 shows that there is a strong relationship between brown and black

coal deposits on the one hand and the number of active coal plants on the other hand. This

association extends to the geographical coal exposure measures, as shown in Column (2). In

Columns (3) and (4) we use the number of employees in energy-intensive heavy industry as

the dependent variable. A larger share of areas with coal deposits is associated with a larger

number of worker in these sectors (conditional on a region’s overall employment level) which

supports the hypothesis of collocation of black coal deposits and energy-intensive industry.

We find no such relationship in the case of brown coal, which is consistent with the greater

predictive power of the black coal exposure measure in the first stage of the IV regressions (see

Table A15).

Validity. The use of coal exposure as an instrumental variable hinges on the assumption that

there are no other channels through which the former might influence QoL. Arguably, we have

ruled out many of the causes for concern by excluding region i = j from the exposure measures.

Hence, local disamenity effects of coal power plants, for example related to unpleasant views,

will not be captured by our instrumental variables. There is also the concern that the presence

of heavy industry in regions with coal deposits led to intensive bombing raids during WWII.

It is conceivable that the resulting destruction of the housing stock and of infrastructure led

to a permanent reduction in QoL in those regions. We control for a potential war-destruction

effect in our IV regressions, but even if our control was imperfect, excluding region j = i in the

construction of the coal exposure IVs ensures that the IVs will not capture effects of WWII

destruction in region i.

However, one may argue that workers travel across regions for leisure. Hence, WWII de-

struction or any other legacy effect of nearby coal fields on the attractiveness of nearby regions

could be captured by our coal exposure measures. This is why we normalise meteorological
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Table A16: Collocation of energy-intensive heavy industries and coal plants with
coal deposits

(1)
Number of
active coal

plants

(2)
Number of
active coal

plants

(3)
Employees in

energy-intensive
heavy industry

(4)
Employees in

energy-intensive
heavy industry

Black coal cover (in %) 1.658∗∗∗ 0.288∗∗

(0.51) (0.14)
Brown coal cover (in %) 3.226∗∗∗ -1.133∗∗

(0.89) (0.53)
Ln black coal exposure 1.063∗∗∗ 0.390∗∗∗

(0.33) (0.10)
Ln brown coal exposure 0.869∗∗ -0.336∗∗∗

(0.43) (0.13)
Ln employment 0.789∗∗∗ 0.740∗∗∗

(0.06) (0.04)
Constant -1.107∗∗∗ 5.966∗∗∗ -0.369 0.279

(0.26) (1.84) (0.76) (0.89)

Observations 141 141 141 141
Pseudo R2 .099 .089 .650 .717

Notes: Unit of observation is region. Poisson estimation. Sector shares are measured in 2017.
Robust standard errors. + p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

exposure by geographic exposure in Eq. (46). We argue that all spatial spillover effects that

operate independent of wind directions will be net out by geographic exposure in the denom-

inator. Hence, the instrument defined in Eq. (46) provides identifying variation stemming

purely from wind-induced patterns in air pollution which we argue to be exogenous.

M.3 Other applications

This section provides a more detailed discussion of the results summarised in Section F.3. We

present several counterfactual exercises, which are all motivated by the frequently expressed

concern that the Covid-19 pandemic may negatively affect the attractiveness of large cities due

to reduced personal contacts that are crucial for productivity (e.g. knowledge spillovers) or

the utility derived from endogenous amenities (e.g. pubs).

We would like to stress that we do not wish to take any stance on the likely effect of

Covid-19 on productivity and QoL in cities. The below scenarios are hypothetical thought

experiments and, if anything, worst-case scenarios. The reduction in the urban wage and QoL

life premia will likely be partial and to some extent temporary. Moreover, even if worse comes

to worst, our model predicts that it will take 30 years for 75% of the effects in Table A17 to

materialise (see Figure A8).

No agglomeration economies. In this counterfactual, we hold all structural fundamentals

constant. Instead, we set the agglomeration elasticity parameter κθ = 0 after we solve for the

initial SSE and before we solve for the counterfactual SSE. The results are in panel a) of Table

A17. Without agglomeration economies, productivity, wages, and GDP decline in all local

labour markets (LLMs). The effects are stronger in the large LLMs which lose about 9% of
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Table A17: Counterfactual analysis: Other applications

(a) No agglomeration economies All LLM Large LLM Small LLM

Population 1.000 0.912 1.095
GDP 0.895 0.840 0.976
Average wage 0.895 0.893 0.904
Average rent 0.942 0.969 0.996
High-skilled share 1.000 1.032 0.981
Skilled share 1.000 0.981 1.010
Average utility 0.886 0.903 0.905

(b) No social amenities

Population 1.000 0.633 1.492
GDP 0.990 0.625 1.521
Average wage 0.990 0.988 1.019
Average rent 0.734 0.907 1.067
High-skilled share 1.000 0.999 1.173
Skilled share 1.000 0.967 0.977
Average utility 0.604 0.601 0.781

(c) Scenarios (a) and (b) combined

Population 1.000 0.621 1.508
GDP 0.891 0.554 1.379
Average wage 0.891 0.893 0.914
Average rent 0.718 0.889 1.051
High-skilled share 1.000 1.008 1.169
Skilled share 1.000 0.961 0.979
Average utility 0.548 0.551 0.707

(d) Scenario (c) with threefold γθ

Population 1.000 0.373 1.848
GDP 0.889 0.339 1.690
Average wage 0.887 0.907 0.915
Average rent 0.627 0.794 1.066
High-skilled share 1.000 0.746 1.342
Skilled share 1.000 1.011 0.943
Average utility 0.642 0.653 0.717

Notes: Results from model-based numerical simulations. Large (small) local labour markets
(LLM) have a workplace employment of more (less) than 250k workers. All outcomes except
for the last two are given in ratios of counterfactual (SSE) values over initial (SSE) initial
values.
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their workers to smaller LLMs. The reduction in housing demand owing to decreasing wages

leads to lower rents in all LLMs. Due to the shift in demand from the larger towards smaller

LLMs the effect is quantitatively small in the smaller LLMs.

No social amenities. We start from the assumption that conditional on controls the big

data amenity index captures QoL-effects of endogenous amenities (e.g. cafes, concert halls,

pubs) where people engage in activities that generate social media content. Solving Eq. (29)

for the log of QoL gives the following specification which we take to the data in group-specific

regressions:

lnAθi,t = c̄P ζ̃θ lnPi + X ′
i b̃
θ + ε̃i

θ,

where c̄P ≡ c̃P , ζ̃θ = 1
ζθ

, X ′
i b̃
θ ≡

∑
n (bθn

P
lnXi,n) and ε̃i

θ ≡ − ln εi
θ. We include all covariates

other than the residualised big data amenity index from Table 2 in X ′
i . To evaluate an extreme

case in which all amenities captured by the big data amenity conditional on covariates become

obsolete, we define the counterfactual change in QoL as Âθi =
(
PMin

Pi

)ζθ
, where PMin is the

smallest value in the distribution of the big data amenity index across regions. Otherwise, the

procedure is identical to the one outlined in Section F.

The results are in panel b) of Table A17. As with the reduction in agglomeration economies,

the QoL shocks hit the larger LLMs harder which is consistent with large cities offering par-

ticularly vibrant cultural, gastronomic, and nightlife amenities. The effects are considerably

larger than in the no “agglomeration economies” scenario, with population size predicted to

drop by almost 40% in large LLMs. The effect on overall GDP is more moderate, though there

is a large drop (increase) for large (small) LLMs. The large migration into small LLMs causes

rents to rise in absolute terms, whereas they naturally fall in the large LLMs.

No agglomeration economies and no social amenities. In a third scenario, we explore

the joint effect of eliminating productivity and consumption benefits of big cities. As expected,

the results in panel c) of Table A17 blend the results from panels a) and b). Large LLMs lose

slightly more of their population than in panel b). There are large negative effects on wages

in both regions and yet rents increase in the small LLMs due to the shift in demand.

No agglomeration economies and no social amenities, with threefold γθ. The last

scenario in panel d) of Table A17 serves the purpose of illustrating how the frictional nature

of our DSM anchors the spatial economy in the presence of a major shock. As discussed in

Section C, spatial arbitrage in our model is imperfect unless the migration elasticity γθ is

very large. Larger γθ necessarily imply lower migration costs τ θij,j 6=i since γ × τ θij is jointly

identified empirically. Tripling γθ brings the average across groups close to unity after which

the DSM-QoL approaches the RR-QoL (see Figure 6).

In panel d) we invert the model using thrice the estimated value of γθ. We then make

the same changes to κθ and Aθi as in scenario c) maintaining the large γθ values. Expectedly,
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the larger migration response owing to reduced idiosyncratic attachment amplifies the effects

found in scenario c). Large LLMs lose more than 60% of their workers and almost 70% of their

GDP. Despite a reduction in wages of about 9%, small LLMs experience rents increasing by

7% due to an increase in employment by about 85%.

The important takeaway is that the effects predicted by our model are not nearly as dev-

astating as predicted by a canonical SSE model. The intuition is that because of idiosyncratic

tastes many infra-marginal workers will not leave large LLMs even if the expected group-specific

utility is larger in small LLMs. We consider this a realistic feature of our model.

N The role of expectations

In quantifying our DSM, we need to define how agents form expectations. One extreme is to

assume perfectly informed agents that anticipate all future changes in goods and factor prices

as well as future migration decisions. The other extreme is to assume myopic agents that

extrapolate current prices into the infinite future and abstract from future migration decisions.

We treat the latter as a special case that can be obtained from the former general case under

some seemingly restrictive assumptions (J.3). Other special cases are imaginable in which

agents anticipate future prices, but abstract from future migration decisions to varying degrees.

As already pointed out by Caliendo et al. (2019b), the general case involves a dimensionality

problem when all fundamentals of the model are to be inverted. Within the special cases, the

complexity of the computational problem is generally larger, the less restrictive the assumptions

regarding expectations are. Our methodological contribution is to develop an approach to the

inversion of a QSM under perfect foresight in goods and factor prices. Guided by the stylized

fact that the average worker changes the local labour market only once over the employment

biography, we assume that workers do not anticipate subsequent moves when making migration

decisions in the baseline quantification of our model. The purpose of this section is to compare

this baseline case to more or less restrictive special cases that make the quantification of the

model computationally less or more burdensome. The main takeaway is that the choice of

how residents form expectations has moderate effects on the quantitative predictions of the

model. With respect to the key findings in the paper – in particular the greater dispersion in

regional QoL in a frictional model – the baseline case delivers the most conservative predictions.

Even the fairly restrictive assumption of myopic agents appears to be a reasonable choice in

high-dimensional settings.

N.1 General and special cases

We refer to perfect foresight as the model-consistent anticipation of all future prices on goods

and factor markets. By sequential moves, we refer to the anticipation of migration decisions

that happen in the future, subsequent to an initial migration decision.
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General case with perfect foresight and multiple sequential moves. The general

formulation of expected utility and migration probabilities in Section J.3 allows agents to

anticipate all future group-region-specific wages and rents and imposes no restriction on the

sequence of migration decisions. Two challenges lie in the way of quantifying the model in

this general case. First, there is a circularity problem because we can invert Āθi,t for given

future wages and rents; however, to forecast future wages and rents, we require Āθi,t. We

address this problem using the dynamic solver introduced in Section D.3 in the main paper

and in Section K.3 in this appendix. Second, with sequential migration, the attractiveness of

a potential migration destination j depends on the migration options j offers as a migration

origin in subsequent moves. The migration option value Oj introduced in Eq. (25) depends

on migration costs τjm and the pull factors at m, which include the migration option value

Om. Building on Artuç et al. (2010), Caliendo et al. (2019b) show how to exploit the Bellman

principle to implement the general case in a setting where the model does not have to be fully

inverted. Intuitively, the migration option value cancels out when the model is solved in first

differences. Caliendo et al. (2019b) use this approach to quantify the effects of the China trade

shock. Using a similar approach, Caliendo et al. (2019a) evaluate the effects of EU market

integration. Similarly, Balboni (2019) analyses the effects of road investments in Vietnam. We

adopt a similar approach when estimating the migration elasticity in Section D.2. However,

when we invert QoL, we need to solve for a structural fundamental in levels, which requires

us to model the migration option value explicitly. Sequential moves imply that migration

probabilities depend on migration option values at potential destinations which, in turn, depend

on migration option values at subsequent destinations. This creates the dimensionality problem

that we discuss in Section N.2.

Special case with perfect foresight and one sequential move. To reduce the dimen-

sionality problem, we can assume that workers, when making their migration decisions, expect

to relocate once. The assumption of perfect foresight along with the restriction to one expected

sequential move leads to the following definition of the migration option value (see Appendix

J.3 for the derivation):

Oθj,t+2 =
1

1 + ρ
ln
[ ∑
m∈J

(
exp

(
−τ θjm

)
Bθ
jm,t+2Vθm,t+2

)γθ ] 1

γθ (47)

Unlike in the general case in Eq. (11), the migration option value in Eq. (47) no longer depends

on the migration option value at m. This restriction solves a dimensionality problem in the

inversion of structural fundamentals under perfect foresight that is discussed in Caliendo et al.

(2019b). Implicitly, we assume that Om = 0 in Eq. (25), so that Oj only depends on future

wages, rents, QoL, and migration probabilities in m for which we solve using the dynamic

solver. Of course, Oj includes the option to stay put at j with a high probability. Tracking an

entire cohort of West German workers over their entire 40-year employment biographies, we

find that almost 90% switch less than twice between local labour markets. Hence, we argue
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that it is reasonable to assume that workers do not expect more than one additional future

relocation when making a migration decision.

Special case with perfect foresight and no sequential move. In fact, the mean number

of moves across local labour markets in the data is close to one. Therefore, one might argue

that workers, when making migration decisions, expect to stay put at a potential destination.

Abstracting from subsequent moves further simplifies the problem as we can set Oj = 0 in Eq.

(25), allowing us to abstract from migration option values altogether. This choice is primarily

a matter of taste. It does not reduce the dimensionality as the dynamic solver solves for all

ingredients that enter the migration option values Oj . Of course, the restriction still lowers the

computational burden in high-dimensional settings (large J and Θ since the migration option

value needs to be computed for J × θ groups in H = 1000 periods in each of the iterations of

the outer loop of the dynamic solver (see Figure A7).

Special case with static expectations and no sequential move. The assumption that

workers correctly anticipate the transition path to the SSE is standard in a large dynamic

macroeconomics literature. In the context of a DSM, the implication is that workers, when

making migration decisions, process spatially disaggregated information for J interconnected

regions in such a way that they correctly anticipate future demand and supply conditions on

all goods and factor markets in all regions. One alternative is to assume that workers are

myopic and project observed prices into the infinite future. While we assume perfect foresight

in the quantification of the model, we acknowledge that we are expecting a lot from the real-

world counterparts to the agents in our model and that the question whether economic agents

have perfect foresight or are myopic is a philosophical one. Since myopia features as a special

case in our model when wages and house prices are expected to stay constant in real terms

(see Section J.3), it is easy enough to provide a comparison to evaluate the consequences of

this choice. In fact, myopia greatly simplifies the inversion of the model since QoL Ā can

be solved using migration probabilities, wages, and rents that are readily observable using a

standard numerical solution algorithm. Therefore, this approach is particularly amenable to

high-dimensional settings such as in Desmet et al. (2018) and Conte et al. (2020) who cover

the entire planet.

N.2 Dimensionality

Imagine a worker who considers moving from region i ∈ J to region j ∈ J . Let’s further assume

that the worker expects to relocate once more in the future. From any possible region j, the

worker has the option to migrate to region m ∈ J . These are the J options summarised by the

option value Oj . Let’s now assume that the worker expects to make yet another move from

region m to n ∈ J . While staying in j the worker has then a total of J × J options that will

have to be summarised by the option value. More generally, there are JS options if the worker

expects S additional moves subsequent to the initial relocation.
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For the quantification of the model, we compute option values for J ×Θ region-groups and

H forecast periods. Hence, the dimensions of the option value are J×θ×JS×H. At J = 141,

θ = 18, H = 1000, we obtain close to 360 million migration probabilities that enter option

values if we set S = 1, i.e. worker anticipate one subsequent move. At S = 2, this number

increases to more than 50 billion, a dimensionality that is not amenable to the three nested

iterative solution algorithms forming the dynamic solver introduced in Section D.3.

N.3 Comparison of special cases

In this section, we compare some of the main results of our quantitative analysis for the three

special cases introduced in Section N.1.

Transition into the stationary spatial equilibrium. Figure A17 expands on Figure 3

from the main paper by showing the TSE-to-SSE transition path for the two special cases not

reported in the main paper. The projections are fairly similar. The main difference to the

baseline scenario is that the share of high-skilled workers drops if we account for one sequential

move (OV). The restriction to static expectations has similarly minor effects (SP). Pooling

across all region-groups, Figure A16 confirms that the speed of convergence from the TSE to

SSE is fairly similar in all three special cases.

Figure A16: Spatial convergence: Alternative special cases

(a) Perfect foresight with one sequential move (OV) (b) Static expectations (SP)

Note: All trends show the sum of absolute deviations from SSE values in an outcome across group-regions. 2017 starting
values. Model-based forecasts. OV replicates the results for the special case with one sequential move (includes option
value of migration). SP replicates the results for static preferences. The baseline case with perfect foresight and no
sequential moves is in Figure A8.

In Table A18, we compare average SSE outcomes (the PF scenario is identical to the SSE in

Table 1 in the main paper). For most outcomes, the SSE is virtually identical across all special

cases. There are notable differences in the amenity index, which is the population-weighted

QoL inverted using the dynamic solver. Allowing for a sequential move, the model rationalises
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the data by a higher weighted QoL. Note that the unweighted average QoL (Āθi,t) across regions

is one by definition (see Eq. (3)). The weighted average density is almost identical across the

special cases, revealing a similar population distribution. Hence, the generally higher amenity

index in the special case with sequential moves reveals that the model rationalises the data with

a higher QoL in the densely populated areas, i.e. the urban QoL premium is greater than in

the other special cases. The intuition is straightforward. The urban QoL premium is positive

in Germany, even when assuming a competitive spatial equilibrium (see Table 2). Allowing

for sequential moves implies that workers migrating into high-QoL urbanised regions expect to

relocate to, on average, lower-QoL regions with an expected probability > 0. This depreciates

the expected utility at the migration destination relative to the special case in which workers

expect to stay put. Therefore, the model rationalises the larger migration flows into high-QoL

urbanised regions via an even larger QoL.

Figure A17: Transition from TSE into SSE in Berlin: Varying expectations

Notes: Model-based forecasts using the dynamic solver introduced in Section D.3. 2017 starting values. Yearly gross
wage, skill shares and housing consumption are weighted by group shares. NOV is the baseline result from Figure 3 in the
main paper. OV replicates the results for the special case with one sequential move (includes option value of migration).
SP replicates the results for static preferences.

Spatial QoL differentials. Figure A18 replicates the left panel of Figure 4 in the main paper

for the special cases of perfect foresight with one sequential move and static expectations. The

figure substantiates the conclusions from Table A18. The spatial distribution of QoL in the

case of static expectations closely resembles the baseline case. There is even more dispersion in

the spatial case with perfect foresight and one sequential move. The region-level correlations

in Figure A19 further substantiate this impression. We conclude that our central finding that

spatial QoL differences are much larger once mobility frictions are accounted for does not

depend on how we model expectations. In fact, if workers anticipate a subsequent move in

their initial migration decision, the inverted spatial QoL differences become even larger than
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reported in the main paper.

Table A18: SSE: Varying expectations

Outcome NOV OV SP

Output in bn. 1.056 1.056 1.056
Amenity index 1.639 2.164 1.553
Weighted average density (emp./km2) 144.462 143.383 144.437
Amenity index, unskilled 2.272 3.142 2.082
Amenity index, skilled 1.414 1.742 1.363
Amenity index, high-skilled 2.218 3.330 2.043
Weighted density, unskilled 161.940 161.198 161.805
Weighted density, skilled 136.149 135.413 136.134
Weighted density, high-skilled 168.040 165.580 168.020
Yearly wage (e), unskilled 23239 23239 23239
Yearly wage (e), skilled 33722 33721 33722
Yearly wage (e), high-skilled 50773 50742 50773
Yearly housing cost (e/m2), unskilled 133.601 133.452 133.495
Yearly housing cost (e/m2), skilled 120.420 120.232 120.420
Yearly housing cost (e/m2), high-skilled 152.752 151.453 152.748
Housing consumption m2, unskilled 43.656 43.657 43.684
Housing consumption m2, skilled 70.489 70.528 70.488
Housing consumption m2, high-skilled 85.577 86.239 85.578

Notes: All SSE values are model-based forecasts of the dynamic solver. QoL index is
normalised within-group measure Āθi,t, weighted by group-region employment Lθi,t. OV
is the special case with perfect foresight and one sequential move. NOV replicates the
results for the special case with perfect foresight without sequential moves (the SSE in
Table 1). SP replicates the results for the special case with static expectations.
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Figure A18: Spatial variation in quality of life: Varying expectations

(a) Āi, perfect foresight, one sequential move (OV) (b) Āi, static expectations (SP)

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Group adjustment in
auxiliary regressions of ln(QoL) against group and region fixed effects, the latter being shown on the maps. The baseline
case with perfect foresight and no sequential moves is in Figure 4 in the main paper.

Counterfactual analysis. In Figure A20, we compare some key outcomes of the counter-

factual analysis of the effects of a regional pollution reduction in heavily polluted regions from

Section F across the three special cases. The counterfactual effects on wages, rents, and indirect

utility are very similar, both in levels and trends. This is an important insight as it suggests

that the computationally much less demanding special case with static preferences represents

a reasonable approximation for high-dimensional settings.
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Figure A19: Correlation in quality of life across special cases

(a) Perfect foresight and sequential move vs. perfect
foresight and no sequential moves

(b) Static expectation vs. perfect foresight and no se-
quential moves

Note: Unit of observation is group-weighted regional QoL level. OV = perfect foresight, one sequential move, NOV =
perfect foresight, no sequential move. SP = static expectations.
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Figure A20: Counterfactual analysis: Comparison across special cases

(a) Rent Bochum (b) Rent, Munich

(c) Wage Bochum (d) Wage Munich

(e) Utility Bochum (f) Utility Munich

Note: Counterfactual experiment is a QoL increase induced by a pollution reduction in the most polluted regions. See
Figure 8 for an illustration. OV = perfect foresight, one sequential move, NOV = perfect foresight, no sequential move.
SP = static expectations.
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O Quality-of-life rankings

In Table A19, we provide a ranking of regions according to QoL in the spirit of Blomquist

et al. (1988) and Albouy (2011). We use the region-level group-mix adjusted QoL measures

displayed in Figure 4. Confirming the evidence presented in Section E, DSM-QoL and RR-QoL

are closely correlated at the regional level, in logs and ranks (see also Figure A21).

Figure A21: DSM-QoL vs. RR-QoL

(a) Logs (b) Ranks

Note: Unit of observation is 141 labour market areas as defined by Kosfeld and Werner (2012). Group adjustment in
auxilliary regressions of ln quality of life against group and region fixed effects, the latter being shown in figures. Marker
size proportionate to employment in local labour market.
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Table A19: Quality of life rankings

Labour market
DSM-QoL
Rank

DSM-QoL
in logs

RR-QoL
Rank

RR-QoL
in logs

Rank
difference

Berlin 1 1.648 3 0.393 2

München 2 1.563 2 0.438 0

Hamburg 3 1.549 1 0.478 -2

Frankfurt am Main 4 1.366 4 0.303 0

Köln 5 1.097 5 0.281 0

Düsseldorf 6 1.089 7 0.245 1

Stuttgart 7 1.048 14 0.200 7

Hannover 8 0.855 16 0.192 8

Nürnberg 9 0.702 39 0.096 30

Mainz 10 0.647 12 0.209 2

Leipzig 11 0.588 24 0.149 13

Münster 12 0.581 13 0.203 1

Karlsruhe 13 0.578 41 0.081 28

Heidelberg 14 0.563 25 0.146 11

Dresden 15 0.553 8 0.243 -7

Bonn 16 0.538 30 0.124 14

Bremen 17 0.512 57 0.049 40

Ludwigshafen 18 0.507 64 0.026 46

Essen 19 0.494 92 -0.076 73

Freiburg 20 0.467 9 0.239 -11

Bielefeld 21 0.432 61 0.033 40

Ingolstadt 22 0.430 17 0.184 -5

Regensburg 23 0.430 11 0.215 -12

Würzburg 24 0.397 36 0.103 12

Böblingen 25 0.378 31 0.124 6

Koblenz 26 0.374 49 0.060 23

Erlangen 27 0.359 10 0.231 -17

Heilbronn 28 0.355 55 0.055 27

Ravensburg 29 0.350 43 0.076 14

Darmstadt 30 0.341 21 0.160 -9

Dortmund 31 0.339 87 -0.065 56

Ulm 32 0.329 35 0.104 3

Kiel 33 0.328 33 0.112 0

Aachen 34 0.320 38 0.098 4

Augsburg 35 0.320 28 0.131 -7

Gießen 36 0.307 42 0.076 6

Erfurt 37 0.286 45 0.071 8

Kassel 38 0.274 58 0.046 20

Osnabrück 39 0.273 47 0.068 8

Konstanz 40 0.265 6 0.257 -34

Traunstein 41 0.232 20 0.163 -21

Soest 42 0.225 68 0.021 26

Göttingen 43 0.205 34 0.107 -9

Magdeburg 44 0.205 51 0.059 7

Oldenburg 45 0.192 26 0.145 -19

Braunschweig 46 0.168 40 0.082 -6

Rostock 47 0.158 19 0.179 -28

Landshut 48 0.155 29 0.130 -19

Reutlingen 49 0.152 48 0.061 -1

Halle 50 0.138 74 0.004 24
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–Table continued from previous page

Labour market
DSM-QoL
Rank

DSM-QoL
in logs

RR-QoL
Rank

RR-QoL
in logs

Rank
difference

Bochum 51 0.132 112 -0.143 61

Fulda 52 0.118 52 0.059 0

Bamberg 53 0.117 15 0.200 -38

Aschaffenburg 54 0.109 27 0.135 -27

Saarbrücken 55 0.078 77 -0.016 22

Trier 56 0.074 22 0.160 -34

Chemnitz 57 0.068 108 -0.131 51

Heidenheim 58 0.044 76 -0.015 18

Kempten 59 0.032 59 0.044 0

Lübeck 60 0.029 66 0.023 6

Ortenaukreis 61 0.029 62 0.032 1

Rottweil 62 0.001 85 -0.052 23

Minden 63 -0.001 97 -0.085 34

Wolfsburg 64 -0.007 54 0.057 -10

Hagen 65 -0.009 111 -0.142 46

Schwerin 66 -0.021 65 0.025 -1

Teltow-Fläming 67 -0.032 37 0.100 -30

Schweinfurt 68 -0.035 75 -0.002 7

Jena 69 -0.037 32 0.112 -37

Weilheim-Schongau 70 -0.066 23 0.153 -47

Bayreuth 71 -0.070 60 0.042 -11

Vechta 72 -0.084 44 0.074 -28

Märkisch-Oderland 73 -0.095 18 0.182 -55

Emsland 74 -0.114 93 -0.077 19

Göppingen 75 -0.114 69 0.020 -6

Wuppertal 76 -0.117 131 -0.200 55

Olpe 77 -0.120 118 -0.169 41

Pforzheim 78 -0.122 84 -0.038 6

Lörrach 79 -0.123 50 0.060 -29

Schwäbisch Hall 80 -0.149 70 0.011 -10

Borken 81 -0.179 67 0.021 -14

Kaiserslautern 82 -0.194 88 -0.066 6

Limburg-Weilburg 83 -0.195 98 -0.092 15

Memmingen 84 -0.197 56 0.053 -28

Potsdam-Mittelmark 85 -0.202 104 -0.106 19

Altötting 86 -0.211 71 0.009 -15

Amberg 87 -0.213 91 -0.074 4

Emden 88 -0.216 126 -0.185 38

Siegen 89 -0.220 103 -0.103 14

Frankfurt (Oder) 90 -0.231 95 -0.082 5

Deggendorf 91 -0.234 53 0.059 -38

Landau 92 -0.239 72 0.009 -20

Oberhavel 93 -0.251 46 0.069 -47

Bad Kreuznach 94 -0.253 83 -0.037 -11

Flensburg 95 -0.258 110 -0.138 15

Waldshut 96 -0.261 63 0.027 -33

Cottbus 97 -0.268 80 -0.031 -17

Passau 98 -0.273 81 -0.032 -17

Bautzen 99 -0.289 132 -0.217 33

Ansbach 100 -0.305 94 -0.082 -6
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– Table continued from previous page

Labour market
DSM-QoL
Rank

DSM-QoL
in logs

RR-QoL
Rank

RR-QoL
in logs

Rank
difference

Goslar 101 -0.307 120 -0.173 19

Coburg 102 -0.308 73 0.005 -29

Nordvorpommern 103 -0.315 79 -0.031 -24

Pirmasens 104 -0.336 102 -0.101 -2

Elbe-Elster 105 -0.336 107 -0.125 2

Kleve 106 -0.346 100 -0.093 -6

Ostprignitz-Ruppin 107 -0.349 82 -0.035 -25

Celle 108 -0.365 90 -0.074 -18

Donau-Ries 109 -0.367 78 -0.021 -31

Dessau-Roßlau 110 -0.369 124 -0.180 14

Mecklenburgische Seenplatte 111 -0.380 109 -0.136 -2

Bremerhaven 112 -0.392 127 -0.186 15

Stade 113 -0.401 89 -0.071 -24

Gera 114 -0.409 122 -0.178 8

Weißenburg-Gunzenhausen 115 -0.414 101 -0.099 -14

Suhl 116 -0.427 119 -0.173 3

Cham 117 -0.446 86 -0.062 -31

Südvorpommern 118 -0.475 105 -0.107 -13

Hof 119 -0.500 141 -0.413 22

Hameln 120 -0.505 121 -0.178 1

Eisenach 121 -0.508 114 -0.150 -7

Saalfeld-Rudolstadt 122 -0.509 117 -0.165 -5

Wilhelmshaven 123 -0.511 135 -0.239 12

Zollernalbkreis 124 -0.530 123 -0.179 -1

Uckermark 125 -0.533 106 -0.121 -19

Nordhausen 126 -0.537 99 -0.093 -27

Lüchow-Dannenberg 127 -0.544 113 -0.148 -14

Altenkirchen 128 -0.547 125 -0.181 -3

Havelland 129 -0.577 136 -0.241 7

Waldeck-Frankenberg 130 -0.584 139 -0.299 9

Dithmarschen 131 -0.589 96 -0.082 -35

Stendal 132 -0.608 128 -0.191 -4

Sigmaringen 133 -0.621 115 -0.150 -18

Bitburg 134 -0.624 116 -0.156 -18

Freyung-Grafenau 135 -0.655 133 -0.218 -2

Höxter 136 -0.676 134 -0.229 -2

Vulkaneifel 137 -0.688 129 -0.192 -8

Kronach 138 -0.689 130 -0.198 -8

Uelzen 139 -0.701 137 -0.244 -2

Unstrut-Hainich 140 -0.735 138 -0.282 -2

Prignitz 141 -0.777 140 -0.340 -1
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lanz der Wohnungstotalschäden und Folgen des Luftkrieges unter bevölkerungsgeographischem Aspekt,

Dortmund: Dortmunder Vertrieb für Bau- u. Planungsliteratur, 1991.

Imbert, Clément and John Papp, “Short-term Migration, Rural Public Works, and Urban Labor

Markets: Evidence from India,” Journal of the European Economic Association, 2019, 18 (2), 927–

963.

Kasperski, Michael, “A new wind zone map of Germany,” Journal of Wind Engineering and Indus-

trial Aerodynamics, 2002, 90 (11), 1271–1287.

Kosfeld, Reinhold and Alexander Werner, “Deutsche Arbeitsmarktregionen-Neuabgrenzung nach

den Kreisgebietsreformen 2007-2011,” Raumforschung und Raumordnung, 2012, 70 (1), 49–64.

Koster, Hans R. A. and Edward W. Pinchbeck, “How do Households Value the Future? Evidence

from Property Taxes,” American Economic Journal: Economic Policy, 2021, forthcoming.

Mohammed, Saif I.Shah and Jeffrey G. Williamson, “Freight rates and productivity gains in

British tramp shipping 1869 - 1950,” Explorations in Economic History, 2004, 41 (2), 172–203.

Monras, Joan, “Immigration and Wage Dynamics: Evidence from the Mexican Peso Crisis,” Journal

of Political Economy, 2020, 128 (8), 3017–3089.

Moore, Michael J. and W. Kip Viscusi, “The quantity-adjusted value of life,” Economic Inquiry,

1988, 26 (3), 369–388.

OECD, “Taxing Wages 2017,” 2017.

Redding, Stephen J., Daniel M. Sturm, and Nikolaus Wolf, “History and Industry Location:

Evidence from German Airports,” The Review of Economics and Statistics, 2010, 93 (3), 814–831.

Saiz, Albert, Arianna Salazar, and James Bernard, “Crowdsourcing architectural beauty: Online

photo frequency predicts building aesthetic ratings,” PLoS ONE, 2018, 13 (7).

Statistisches Bundesamt, “Einkommens- und Verbrauchsstichprobe Konsumausgaben privater

Haushalte,” Fachserie, 2020, 15 (5).

Tobler, W. R., “A Computer Movie Simulating Urban Growth in the Detroit Region,” Economic

Geography, 1970, 46, 234–240.

Tombe, Trevor and Xiaodong Zhu, “Trade, Migration, and Productivity: A Quantitative Analysis

of China,” American Economic Review, 2019, 109 (5), 1843–1872.

114


	References
	Introduction
	Stylised facts
	Model
	Workers
	Production
	Migration and timing
	Equilibrium
	Worker expectations
	Spatial arbitrage
	Quality-of-life premiums

	Quantification
	Data
	Structural parameters
	Structural fundamentals
	Transition into the stationary spatial equilibrium
	Overidentification

	Quality of life
	Spatial variation in quality of life
	Determinants of quality of life
	The role of the migration elasticity

	Policy evaluation
	Procedure
	Application
	Other applications

	Conclusion
	Stylised facts
	Literature appendix
	Theory appendix
	Housing market
	Net present value of utility
	Expected utilities and migration probabilities
	Expected utility
	Unconditional expectation of current period utility 
	Migration option values 
	Conditional migration probability
	Expected utilities and sequential moves

	Uniqueness
	Quality-of-life premiums

	Quantification appendix
	Data
	Spatial unit
	Employment
	Migration
	Productivity
	Housing costs
	Migration distance
	Big data
	Location characteristics
	Summary statistics

	Structural parameters
	Density elasticity of productivity ()
	Land share in housing ()
	Migration elasticity ()
	Migration cost ( ij)
	Bilateral amenity (Bij)

	Structural fundamentals
	Fundamental labour productivity
	Fundamental housing productivity
	Quality of life (Ai,t)

	Transition into the stationary spatial equilibrium
	Overidentification

	Measuring quality of life
	Spatial variation in quality of life
	Determinants of quality of life

	Policy evaluation
	Social welfare
	Instrumental variable estimates of air pollution effects
	Other applications

	The role of expectations
	General and special cases
	Dimensionality
	Comparison of special cases

	Quality-of-life rankings

